

The current issue and full text archive of this journal is available at www.emeraldinsight.com/2042-5945.htm

WJSTSD 9,3

164

Apple farm management practices in the Northeastern US and Northern China

Weihong Fan and Raymond G. Mueller School of Natural Sciences and Mathematics, Richard Stockton College of New Jersey, Galloway, New Jersey, USA Weili Qiu

School of Geography, Beijing Normal University, Beijing, China, and Michael J. Hozik

School of Natural Sciences and Mathematics, Richard Stockton College of New Jersey, Galloway, New Jersey, USA

Abstract

Purpose – The purpose of this study is to compare the different pesticides management practices and productions in three apple farms in the Northeastern US and Northern China.

Design/methodology/approach – Interviews and surveys were conducted in the three farms between the summer of 2010 and spring of 2011. Production, pesticide and fertilizer usage, and labor costs were calculated for comparison.

Findings – The conventional US apple grower manages his farm for maximum production and minimum labor costs. As a result, the farm achieved a high yield of 24.68 kg/dollar, but low health value for the highest amount of pesticide expenditure (\$2.43 per 100 kg of apples). The organic apple farm aims at minimizing environmental impact and protecting consumers. Its yield was 14.22 kg/dollar with 15-30 percent greater labor costs. The health value of the apples improved with pesticide expenditure of \$1.66 per 100 kg of apples. This farm uses only the least toxic pesticide certified by OMRI. The traditional apple farm in Northern China spent 1,365 hours/ha on bagging to protect consumers, comparing to only 252 hours/ha of total labor spent in the conventional apple farm. Annual production of the Chinese farm was 22,727 kg/ha, which was only 50 percent of the conventional apple production.

Originality/value – The results reveal great potential for a much better economic and environmental effectiveness in the Chinese apple farm if they redirect labor from bagging to an effort for production and efficient management while still providing consumer protection.

Keywords Organic apple farm, Integrated Pesticide Management (IPM), Apple production,

Green agriculture, Northern China apples, Kaolin clay, Vertical axis systems, Farming sustainability, Agriculture, Pesticides, China, United States of America

Paper type Case study

World Journal of Science, Technology and Sustainable Development Vol. 9 No. 3, 2012 pp. 164-174 © Emerald Group Publishing Limited 2042-5945 DOI 10.1108/20425941211250525

1. Introduction

Sustainability is an easy word to say but harder to put into operation for a specific situation. For example, what do we mean by "sustainability"? Sustainability of what?: a farmer's livelihood, crop yields, labor employment and costs, soil and water resources, environmental quality, economic profitability, and/or specific cultural resources. Sometimes sustainability of one factor may conflict with sustaining another

An earlier shorter version of this paper is published in the *World Sustainable Development Outlook 2011* entitled "Sharing Knowledge Making a Difference: The Role of International Scientific Cooperation" published by WASD, 2011.

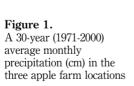
factor. We examine the different aspects of sustainability using a case study of different approaches to apple production in the USA and China.

Apples are a popular and important part of the human diet worldwide because they are full of vitamins and antioxidants. In addition to being eaten fresh apples are also processed into other products such as drinks, dried fruit, baked goods, etc. The health value of apples, however, can be seriously compromised by pesticide applications during a growing season. According to the Environmental Working Group (1999), a total of 36 chemical pesticides were detected on over 90 percent of the apples they tested from conventional apple farms in the USA. These chemicals are harmful to human health, especially to children (Wiles et al., 1999). Organophosphate, one of the most effective and therefore popular pesticides of apple trees, is a designated nerve agent that can alter brain function (Leong, 2009). Recognizing these problems, government agencies, many environmental groups, NGOs, such as National Sustainable Agriculture Information Services (NSAIS) and the Organic Materials Review Institute (OMRI), have committed huge efforts to promote and facilitate organic apple farming. Even consumers' demand for organic fruit has increased significantly since 2000 (Grubinger, 2006; Hipps, 2011). However, we have to admit that apples are among the most difficult crops to grow organically, especially in areas of the USA with a moist climate. These areas are generally located east of the "tree line" (approximately the 97th meridian) (NSAIS, 2011). Apple growers in the northeast consider organic farming impractical for commercial production due to the astronomical labor cost. That is why only 5 percent of US organic apples are from the east (Savre, 2004).

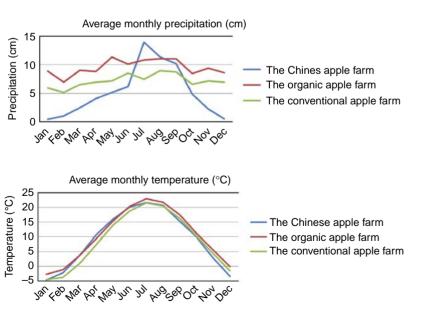
Although facing higher production costs, some apple growers in the northeastern USA are committed to organic farming, due to a sense of responsibility for their own health, the health of consumers, and the environment. They profit by marketing their unappealing product for use in cider and other processed food and directly marketing their best apples to consumers because the retail price is much higher than the wholesale price. Although it can be a long road ahead, the future of organic farming will be made easier with development of new technologies and the advance of producer and consumer education. An economically and ecologically successful apple business is always built on self-learning and ad hoc practice in respond to site-specific conditions (NSAIS, 2011).

Currently, China is the world's largest exporter of apple juice. Apple juice concentrate imported from China increased from 1.1 billion liters in 1998 to 2.3 billion liters in 2008 in the USA (USDA, 2011a). China also dominates the world market for fresh apples, especially in Australia (Department of Agriculture, Fisheries and Forestry, 2011) and Asia. Rigorous inspection for food safety requires the Chinese government to tighten its regulations. The focus is on labor-intensive products including vegetables, fruits, and meat (Bingsheng, 2001). Only the most appealing and pesticide-free apples are qualified for export, which becomes the driving force behind "organic" management of apple farms in China. Government subsidy and cheap labor keep apple growers profitable (Gleason and McGuire, 2003).

In this study, we compare differences in apple farm pest management practices and evaluate their economic and environmental effectiveness. This can serve as a basis for future experimental design to improve pest management practices. The comparison is based on data collected from a conventional apple farm and an organic apple farm in the northeastern USA and a traditional apple farm in north China. All findings reported here are preliminary results.


WISTSD 9.3

166


2. Geographical and climatic conditions

Apple farm management and production is closely related to its geographical location and climatic conditions. The state of New York ranks second in the USA in apple production because of the suitable climate and fertile soils (Hoving *et al.*, 2008). The climate is classified as a moist continental type with prevailing wind direction from the west. Its close proximity to the large body of water to the northwest, Lake Ontario, provides moisture for frontal systems controlling precipitation of the region. The average annual mean temperature is about 8.67°C according to data from National Climate Data Center (NCDC), with the coldest month in January $(-4.5^{\circ}C)$ and warmest month in July (21.5 $^{\circ}$ C). The growing season runs between 150 and 180 days. Average annual precipitation is 332.7 cm with relatively uniform distribution year round (Figure 1). It is worth noticing that seasonal snowfall of 101-127 cm provides a protective cover for apple trees against occasional cold blasts in the region (Peck and Merwin, 2009).

Compared to the climatic conditions of the conventional apple farm, average monthly temperatures of the organic apple farm, and Chinese apple farm, are very similar with an identical seasonal pattern (Figure 2). However, monthly precipitation of the three locations shows obvious differences (Figure 1). While the organic apple farm's precipitation is about 2 cm higher than that of the conventional apple farm in each month, there is no significant difference in seasonality. In contrast, monthly precipitation of Chinese apple farm shows a clear pattern of wetter summers and much drver winters. Summer rainfall (July-September) amounts for 56.7 percent of the total annual rainfall, northern China is in the transitional zone from semi-humid to semiarid climate and is dominated by a monsoon climate characterized by a 180 degree change of wind direction between winter and summer. Winter's off-shore wind from the Asian interior keeps it dry while summer's on-shore wind from the Pacific Ocean provides much needed moisture for frontal systems producing a significant amount of precipitation between July and September.

Figure 2. A30-year (1971-2000) average monthly temperature (°C) in the three apple farm locations

Soils of the conventional apple farm developed from glacial deposits. Alfisols are dominant in low-land areas with 3-8 percent organic matter, while inceptisols are found in upland areas with 3-6 percent organic matter content. Both are fine textured and moderately well-drained soils with a bulk density of 1.1-1.4 and relatively high soil pH. The soils of the organic apple farm are developed from the regolith of limestone at the foothills of the Blue Mountains. They are silty loams and moderately well-drained soils as well. Alfisols are dominant in the valleys with 1-4 percent of organic matter while ultisols on the slopes with about 1-3 percent of organic matter content. Soil pH is also relatively high because of the parent material. The Chinese apple farm is on the Loess Plateau in China. The Loess Plateau is made of windtransported silt deposited over many thousands of years and is more than 100 meters in thickness. Because of its weak calcium carbonate bonding and vertical structure. loess is susceptible to water erosion. However, its homogeneous nature and high porosity make it very easy to work with. In the apple farms of the area, soil organic matter at the top 40 cm is between 0.8 and 0.99 percent, on average (Free Papers Download Center, 2010). It is also moderately well drained. Although the fertility levels differ to a certain degree, soil texture, and pH levels of the three locations are very similar and most suitable for apple production.

3. Management strategies and practices

Following the strategy of high-density apple trees for high yield, a new generation of rootstocks was introduced in the 1960s. Average apple growers in the northeastern USA planted smaller trees with greater potential per unit area production (Plate 1). During the 1980s, the average number of trees per hectare increased to 597. Currently, a typical grower plants 1,600 trees per hectare in their new orchards and the recommended ideal planting density for maximum production is 2,471 trees per hectare in the form of the Vertical Axis and the Tall Spindle Systems (Hoying *et al.*, 2008).

Vertical Axis and Tall Spindle Systems are becoming popular in the apple country because these planting systems maximize profitability through early yield, reduced costs for pruning, thinning, and spraying, and the high turn-over rate for better varieties (Hoying *et al.*, 2011). Such systems require a dedicated water and nutrient

Plate 1. A conventional apple orchard in the northeastern USA

management system for a perfect balance between vegetative growth and cropping (Robinson, 2011). The trees are supported by vertical trellises with wires, and planted in rows spaced just wide enough for a self-propelled orchard platform (Plate 2). Workers on the platform can easily conduct various tasks including pruning, hand thinning, trellis building, and harvesting from both sides of the platform as it moves along each row. This method saves time, reduces labor intensity, and allows for a more diverse labor pool since no climbing ladders are needed. All this, increases labor efficiency and reduces costs significantly (Sazo *et al.*, 2010).

In a manner similar to his counterparts, the conventional apple grower manages his farm for maximum production and minimum labor cost. He has a 40 ha apple farm with 25-year-old trees on average, which indicates that the new planting system is not in effect yet on this farm. His annual apple production is 45,731 kg/ha while annual hired labor costs are \$1,853/ha including \$680/ha for harvesting. Compared to the average labor costs (\$2,436/ha) of 25 apple farms in the same area (White *et al.*, 2008), he managed to spend 24 percent less. To keep production high and labor cost low, he has no plans for transitioning to organic production but does strictly follow the Pest Management Guidelines issued by Cornell University Cooperative Extension (2011). He spends about \$1,112/ha per year on pesticide, which is slightly lower than the average expenditure of \$1,255/ha on chemical fertilizer.

Organic farming requires an integrated approach which means managing a production system "to respond to site-specific conditions by integrating cultural, biological and mechanical practices that foster cycling of resources, promote ecological balance, and conserve biodiversity" (USDA, 2011b). All organic producers must follow strict federal regulations of the Organic Foods Production Act of 1990, and be certified by the USDA. Instead of using chemical sprays, organic farms turn to mechanical or biological pest controls, such as insect traps, particle-film technology, and farmscaping, in their pest management practice (NSAIS, 2011). This practice requires that farmers constantly monitor for pest/disease infestation and apply the right techniques at the right time. As a result, organic apple production requires more frequent organic spray and/or practices that physically reduce pest population. The average labor cost was about \$4,017/ha per year according to a survey of 22 organic

Plate 2. Vertical Axis system in the northeastern USA

9.3

WISTSD

apple growers (Higby *et al.*, 2007), which is almost double that of the labor costs of a conventional apple grower.

The organic apple farm aims at minimizing environmental impact and protecting consumers. It is a 2.43-ha farm with 1,100 20-year-old trees. Similar to a conventional apple grower, the organic grower also works with grafted trees because they are easier to prune, thin, spray, and harvest. However, high-density planting does not work because crowding prohibits air circulation and promotes disease. A variety of disease-susceptible and disease-resistant apple cultivars are grown here with a combination of early-, mid-, and late-seasonal products that can spread out the risk of weather and disease. The organic farmers use a new generation of organic pest control materials including insect traps, mating-disruption cards, and a kaolin clay liquefied particle film called Surround WP. It is a nontoxic particle film that forms a barrier between pests and apple plants. Depending on the frequency of rain events, it may be applied biweekly or weekly between June and August for best protection. As a result, the costs for such pesticide run between \$1,204-\$2,088/ha. The annual production of the farm is 32,280 kg/ha.

Although it is far from being organic, the traditional apple farm in northern China does pay considerable attention to consumer protection in their pest management practice. Like most apple farms in China, this is a family-leased 0.33 ha orchard. Whereas they use the same types of pesticide and their spray schedule is similar as that of a conventional farm, every fruit is manually bagged right after petal fall to ensure pesticide free apples in markets (Plate 3). The family spends 1,365 hours/ha on bagging each year compared to only 252 hours/ha of total labor spent in the conventional apple farm. The costs of bags are \$723/ha. The annual production is 22,727 kg/ha, which is only 50 percent of the conventional apple production and 71 percent of the organic apple production. Given the fact that China's average apple yield is only 12,970 kg/ha (Gao, 2008), this farm produces much more than the Chinese average. The annual pesticide cost is \$735/ha, which is 34 percent less than that of the conventional apple farm. The chemical fertilizer costs are \$328/ha per year.

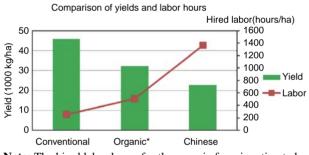
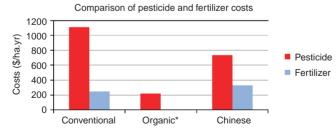


Plate 3. Bagged apples in a farm in northern China


WJSTSD 9,3	4. Effectiveness analysis Economically, the conventional farm has the highest production and lowest hired labor hours (Figure 3). For every hired labor hour per hectare, the conventional farm produces 181.5 kg of apples, the organic farm produces 64 kg, while the Chinese farm produces only 16.6 kg.
170	 Environmentally, the conventional farm sprays \$2.43 worth of toxic pesticides on every 100 kg of apples and the trees that produced them. The Chinese farm sprays \$3.23 worth of pesticides on trees that produce 100 kg of apples, but not on the apples themselves because they are bagged. The organic farm spends the least (Figure 4), which is equivalent to \$0.68 for every 100 kg of apples. The Chinese farm spends the most on chemical fertilizer.

5. Conclusion and discussion

For obvious reasons, the conventional farm produces the most and pollutes the most as well while the organic farm produces fewer apples with minimal environmental pollution. The data from the Chinese farm, however, paint a much more complicated picture. The apple farm employed the most labor-intensive management practice but produced the least amount of apples and caused about the same amount of

Note: The hired labor hours for the organic farm is estimated based on the survey data **Source:** Higby *et al.* (2007)

Notes: Lime sulfur solution is the only chemical pesticide used in the organic farm. Among all chemical pesticides, lime sulfur solution is the least toxic and therefore allowed to be used in orgamic farms

Source: OMRI (2011)

Figure 3. Comparison of yields and hired labor hours in the three farms

Figure 4.

Comparison of yields, pesticide and chemical fertilizer costs of the three farms environmental pollution as that of the conventional apple farm. The only beneficiary of the practice is for consumers getting pesticide free apples. The farm can currently afford the practice as the average wage for farm labor is only \$0.96/hr in China. Although, it may take a few decades to see the impact, the cheap labor advantage of China is already starting to diminish because of a labor shortage, wage disputes, and wage increases for migrant workers in recent years (Fan, 2010). Young farmers will leave their farms for a better paid job if they can find one. For these reasons, the labor-intensive practice may not be sustainable in the future.

Low production may be caused by many factors. Being located on the Loess Plateau with a farming history stretching back thousands of years, northern China's apple farms suffer from serious soil erosion (Wang and Hou, 2010). A study showed that soil organic matter at the top 20 cm decreased from 5.9 to 0.84 percent within only ten years of cultivation of previous woodland in the same area (Xiubin *et al.*, 2002). As a result, available soil nutrients (N, P, and K) are only between 0.05 and 0.07 percent (Free Papers Download Center, 2010) in these apple farms. According to the test results by the Soil and Fertilizer Institute of Shaanxi Province, soils are deficient in many mineral elements such as boron, iron, manganese, and zinc, with the only exception being copper. It is necessary to increase land productivity by using certain environmentally friendly fertilizer and increasing soil organic matter. Clearly, apple production of this area is limited by a spring water shortage and low level of soil fertility. Currently, motor-pumped wells and small reservoirs are built mainly for the daily use of people and animals, but not for orchard irrigation.

The environmental effect is especially important in China because it has about 1.9 million ha of apple farms, which is the largest apple farm acreage in the world (Gao, 2008). It also has the highest population density. Reducing the amount of chemical pesticide and fertilizer would improve environmental quality and the health of billions of people.

For the reasons listed above, we see a great potential for much higher production and environmental benefit on the Chinese apple farm if the labor from bagging is redirected to the effort for production, such as setting up water-conserving irrigation systems, managing the orchard floor to increase natural fertility, and apply Vertical Axis system wherever possible to minimize labor costs. This goal can be achieved without compromising consumer protection with the help of particle film technology. Such an approach would increase economic effectiveness significantly as is evident in the organic farm practice. The benefit would be even more obvious in a Chinese apple farm given their current low labor cost. Of course, a practical pest management approach has to be adjusted to fit site-specific conditions and tested out on site to determine the economic effectiveness.

In the context of the larger problem of sustainability, we believe that this study shows some of the difficulty of applying the concept of sustainability to a specific situation. Much thought needs to go into weighting the interacting factors of sustainability, some of which are scientific and quantifiable and others which are cultural and more open to interpretation and subjectivity. As we like to say in some of our classes, Science + Values = Policy. The study of sustainability certainly falls within that equation.

References

Bingsheng, K.E. (2001), "China's WTO entry and its impacts on agriculture sector", available at: www.hks.harvard.edu/m-rcbg/Conferences/financial_sector/PotentialImpactsonAgriculture andFarmers.pdf (accessed May 3, 2011).

WJSTSD 9,3	Cornell University Cooperative Extension (2011), "Cornell Pest Management Guidelines for commercial tree fruit production", available at: http://ipmguidelines.org/treefruits/ (accessed April 24, 2011).
	Department of Agriculture, Fisheries and Forestry, Australian Government (2011), "Questions and answers on Chinese fresh apples", available at: www.daff.gov.au/about/media-centre/ qas-for-chinese-apples (accessed May 7, 2011).
172	Environmental Working Group (1999), "How 'Bout Them Apples?", available at: www.ewg.org/reports/apples (accessed May 1, 2011).
	Fan, G. (2010), "Is low-wage China disappearing?", <i>China Daily</i> , August 31, available at: www.chinadaily.com.cn/opinion/2010-08/31/content_11232619.htm (accessed February 25, 2011).
	Free Papers Download Center (2010), "Apple orchard soil quality in Yan'an City, analysis and thought", available at: http://eng.hi138.com/?i273927_Apple_orchard_soil_quality_in_Yanan_City_Analysis_and_Thought (accessed May 7, 2011).
	Gao, L. (2008), "Regulating trade with a systems approach: the case of Chinese fresh apples", Master's thesis, Michigan State University, East Lansing, MI, p. 25, available at: www.aec.msu.edu/theses/fulltext/gao_ms.pdf (assessed May 3, 2011).
	Gleason, M. and McGuire, J. (2003), "Iowa State University Extension news release", available at: www.extension.iastate.edu/newsrel/2003/nov03/nov0309.html (accessed May 4, 2011).
	Grubinger, V. (2006), "Organic market trends", available at: www.uvm.edu/vtvegandberry/ factsheets/organictrends.html (accessed February 27, 2011).
	Higby, R., Makus, L. and Wang, H. (2007), "A summary of the Pacific Northwest Organic Apple Survey", Agricultural Economics Research Series No. 07-04, University of Idaho, College of Agriculture and Life Sciences, Moscow, ID, available at: www.cals.uidaho.edu/aers/PDF/ AERS/2007/AERS_07-04.pdf (accessed January 18, 2011).
	Hipps, W.K. (2011), "Organic market trends", available at: www.apsense.com/article/159794.html (accessed February 27, 2011).
	Hoying, S.A., Fargione, M. and Robinson, T. (2008), "Fruit production in New York", working paper, Cornell University Cooperative Extension and the Regional Fruit Programs in New York, ISHS Symposium, NYSAES, Geneva, NY, August 4-8.
	Hoying, S.A., Robinson, T. and Fargione, M. (2011), <i>The Tall Spindle Planting System</i> , Cornell University Cooperative Extension, Hudson Valley Lab and NYSAES, available at: www.fruit.cornell.edu/tree_fruit/resources/The%20Tall%20Spindle%20Planting%20 System.pdf (accessed December 18, 2010).
	Leong, K. (2009), <i>Dictionary The Little Known Dangers of Eating Apples</i> , available at: www.bukisa.com/articles/104648_the-little-known-dangers-of-eating-apples (accessed December 3, 2010).
	National Sustainable Agriculture Information Services (NSAIS) (2011), "Apples: organic production guide", available at: www.attra.ncat.org (accessed March 3, 2011).
	OMRI (2011), "OMRI lists", available at: www.omri.org/simple-opl-search/results/ Lime%20sulfur (accessed March 3, 2011).
	Peck, G.M. and Merwin, I.A. (2009), "A grower's guide to organic apples", NYS IPM Publication No. 223, Cornell University Cooperative Extension and New York State Department of Agriculture & Markets, available at: http://nysipm.cornell.edu/organic_guide/apples.pdf (accessed March 28, 2011).
	Robinson, T.L. (2011), "Managing high-density apple trees for high yield and fruit quality", available at: www.newenglandvfc.org/pdf_proceedings/HighDensityApple.pdf (accessed February 24, 2011).

Sazo, M.M., Marree, A.D. and Robinson, T. (2010), "The platform factor – labor positioning machines producing good results for NY apple industry", *New York Fruit Quarterly*, Vol. 18 No. 2, pp. 5-9.

- Sayre, L. (2004), "A future for organic apple growing in the northeast", available at: www.rodaleinstitute.org/2004511/sayre (accessed November 29, 2010).
- USDA (2011a), "Economic research service analysis of data from USDA's global agricultural trade system (GATS)", available at: www.fas.usda.gov/gats/default.aspx# (accessed May 8, 2011).
- USDA (2011b), "National Organic Program", available at: www.ams.usda.gov/AMSv1.0/nop (accessed March 4, 2011).
- Wang, H. and Hou, Y. (2010), "Evolution process of landuse and its impact on soil erosion in Luochuan Tableland from the Qing Dynasty to the Republic of China", *Geographical Research*, Vol. 29 No. 1, pp. 163-72.
- White, G.B., DeMarree, A.M. and Neyhard, J. (2008), "Fruit farm business summary Lake Ontario region New York, 2008", Department of Applied Economics and Management, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, available at: http:// purl.umn.edu/55948 (accessed May 2, 2011).
- Wiles, R., Cook, K.A., Hettenbach, T. and Campbell, C. (1999), "Pesticides in children's food, 10 years after alar", available at: www.mindfully.org/Pesticide/APPLES-Pesticides-Children.htm (accessed December 18, 2010).
- Xiubin, H., Fenli, Z., Cheng, Z. and Keli., T. (2002), "Structural indicator response of soil quality to forestry cultivation on the Loess Plateau of China", paper presented at the 12th ISCO Conference, Beijing, May 26-31, available at: www.tucson.ars.ag.gov/isco/isco12/volumeiv/ structuralindicatorresponse.pdf (accessed May 10, 2011).

Further reading

National Climate Data Center (NCDC) of National Oceanic and Atmospheric Administration (NOAA) (2011), "1971-2000 US climate normals products", available at: www.ncdc. noaa.gov/oa/mpp/freedata.html (accessed February 23, 2011).

About the authors

Weihong Fan is a Professor of Environmental Science at Richard Stockton College of New Jersey. She earned a PhD in Ecology from Colorado State University at Fort Collins, Colorado. She has 25 years of experience in application of geographic information systems and has published numerous articles on her research in the fields of broad scale nitrogen and carbon cycling, climatic change, ecological modeling, and tree species diversity. Weihong Fan is the corresponding author and can be contacted at: Weihong.Fan@stockton.edu

Raymond G. Mueller is Professor of Environmental Sciences at Richard Stockton College of New Jersey. He graduated with a PhD with honors in Physical Geography from the University of Kansas. For 25 years he has been conducting research on paleoenvironments at archaeological sites in the Mid-Atlantic (USA) States and in Mexico. This research was primarily involved with the effect of agriculture on the environment and subsequent effect on local societies. In particular, the research examined the unsustainability of ancient agricultural practices which led to severe erosion and the decline of a series of ancient cultures. He has been teaching courses on agricultural sustainability.

Weili Qiu is an Associate Professor of Physical Geography in Beijing Normal University, China. He has been teaching Physical Geography, Geomorphology and Geology since 1989. His research interests focus on land use and human impacts, geomorphology and quaternary environments, environmental archaeology and human-nature relation in the past. He has

WJSTSD 9,3	published more than 40 papers in both national and international academic journals and surveyed the Loess Plateau of north China and the Yellow River areas for many years. Based on his work, he has started cooperative teaching and research with the Gothenburg University of Sweden and the Richard Stockton College of New Jersey, USA. He has guided field study tours for the students from GU and RSC in north China since 2001.
174	Michael J. Hozik is Professor of Geology at the Richard Stockton College of New Jersey. He earned a PhD from the University of Massachusetts, an MS from the University of Colorado, and a BS from Dickinson College. For the past 35 years he has taught introductory and upper level geology courses at Stockton, including Environmental Geology. Most recently he co-led a study tour to China focusing on human interaction with the environment. He has served as both Member and Chairman of the Hammonton Environmental Commission, serves as Vice Chair of the Hammonton Planning Board, helped promote urban redevelopment as a Member and Officer of the board of the Hammonton Revitalization Corporation, and writes a regular column for the local newspaper.

To purchase reprints of this article please e-mail: **reprints@emeraldinsight.com** Or visit our web site for further details: **www.emeraldinsight.com/reprints**