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Abstract:  The present study utilizes daily mean time series of meteorological 
parameters (air temperature, relative humidity, barometric pressure and wind 
speed) and daily totals of rainfall data to understand the changes in these 
parameters during 17 years period i.e. 1990 to 2006. The analysis of the above 
data is made using continuous and discrete wavelet transforms because it provides 
a time–frequency representation of an analyzed signal in the time domain. 
Moreover, in the recent years, wavelet methods have become useful and powerful 
tools for analysis of the variations, periodicities, trends in time series in general 
and meteorological parameters in particular. In present study, both continues
and discrete wavelet transforms were used and found to be capable of showing 
the increasing or decreasing trends of the meterorological parameters with.  
The seasonal variability was also very well represented by the wavelet analysis  
used in this study. High levels of compressions were obtained retaining the  
originality of the signals.
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Introduction

Climate change on global, regional, and lo-
cal scales is of great concern and has been 
the focus of attention of many researchers 
in the fields of science, engineering and 
social studies throughout the world. This 
is because the long-term climate variabil-
ity is of great importance for the estima-
tion of its impact on human activities and 

for predicting future behavior. Over the 
past century or so the world has warmed 
by approximately 0.6°C, as quoted by 
Nicholas and Collins (2006). According 
to IPCC report (2001) and Meehl et 
al, (2004), there is strong evidence that 
most of the global warming over the past 
50 years is likely to have been due to in-
creases in greenhouse gas concentrations. 
The climatic studies are very common 
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and have been conducted in almost every 
part of the world, for example Freiwana 
and Kadioglub (2008) for Jordan, Elagib 
and Addin Abdu (1997) for Bahrain and 
Alkolibi (2002) for Saudi Arabia. 

The wavelet transform is a strong mathe-
matical tool that provides a time–frequency 
representation of an analyzed signal in the 
time domain as reported by Dabuechies 
(1990) and Percival and Walden (2000). 
Currently, wavelet methods are being used 
as powerful tools for the analysis of varia-
tions, periodicities, trends in time series 
(Partal and Kucuk, 2006; Pisoft et. al., 2004; 
and Yueqing et al., 2004).

Wavelet transforms have been used to 
investigate trends in the central England 
temperature series (Baliunas et al., 1997); to 
study hemispheric temperature series and 
the southern oscillation index (Sonechkin 
et al., 1999); to detect shifts in global tem-
perature (Park and Mann, 2000); and to an-
alyze variability in European temperatures 
(Datsenko et al., 2001). Ding et. al. (2002) 
used wavelet transform to understand the 
frequency features of the Hong Kong tem-
perature data. The climate parameters were 
analyzed by Lau and Weng (1995) using 
wavelet methods to detect and highlight the 
climatic features of the signal.

In this work we use continuous and dis-
crete wavelet transforms to analyze the mete-
orological records (temperature, barometric 
pressure, precipitation, wind speed and rela-
tive humidity) of the weather station at Arar 
in the north western part of Saudi Arabia 
over the 17 year period from 1990 to 2006. 
Our goals are to identify the long term trends, 
detect periodicity and anomalous events and 
to study the compression of the records. It 
will be seen that wavelet tools provide clear 
indications of the sought events as well as a 
powerful tool for data compression.

Site and data description

Arar is a town located in the north western 
part of Saudi Arabia. The latitude, longi-
tude and the altitude of the data collection 
station are 30°54’, 41°08’ and 542 meters, 
respectively. The population of this region 
has increased during last couple of decades 
and economical growth has taken place. As 
a result of which the number cars on the 
road, air transport in the region, the infra-
structure, the support services, etc. have 
increased exponentially. So, to understand 
the local effect on weather parameters of 
the region, daily mean values of air tem-
perature, relative humidity, barometric pres-
sure, wind speed and daily totals of rainfall 
data are used during the period of 1990 
to 2006. This data is collected and man-
aged by the Presidency of Meteorology and 
Environment (PME) at the national airport 
in Arar.

The air temperature at Arar was found 
to vary between a minimum of -0.7°C and 
40.4°C while the overall mean remained 
as 22.2°C. In this region, higher air tem-
peratures of >25°C were observed during 
the months of May to September during 
the year. The minimum temperatures were 
observed in the months of December and 
January. The barometric pressure varied 
between a minimum of 936mb and a maxi-
mum of 967mb while the overall mean re-
mained as 949.6mb. The relative humidity 
was found to vary between a minimum of 
17.7% and a maximum of 65%. The overall 
mean relative humidity in the region dur-
ing entire data collection period was 36%. 
Higher values of relative humidity were ob-
served during winter months (October to 
March) and lower during May to September. 
The wind speed was found to vary between 
0 and 25 knots while the overall mean was 
found to be 7 knots. Higher wind speeds 
were observed in the months of January 
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The rough meaning of this representa-
tion is that we think of f as (an infinite) su-
perposition of harmonics with frequencies 
n = 1,2,…. The coefficients an, bn tell us 
how much of the signal’s energy is allocated 
at frequency n. What these coefficients are 
incapable of doing is provide information 
about their change in time. Thus if the sig-
nal goes through an abrupt change at a spe-
cific time instant the event is not indicated 
by the Fourier coefficients. By contrast, the 
wavelet series of f takes the form 

where  and where 
a

m
, b

n
 are particularly chosen scale and 

time instances (see below). Here the coef-
ficients Cmn represent the energy content 
of the signal at the scales am and times bn, 
m,n = …,–1,0,1,…. It is then immediately 
clear that we have a fuller description of the 
signal; one which captures the scale as well 
as the time events. In this respect, low scale 
values am correspond to rapidly progressing 
components of the signal while high scale 
values correspond to slowly evolving compo-
nents or low-frequency components. Since 
the coefficient Cmn depends also on the time 
instant bn we are able to track the time his-
tory of the coefficient by fixing the value of 
m and changing the value of n. This abil-
ity to tap information about time events is 
extremely important in meteorological stud-
ies and this point will become vividly clear 
throughout this paper. 

We use two types of wavelet transforms, 
namely the continuous wavelet transform 
and the discrete wavelet transform. The 
continuous wavelet transforms (CWT), in 
which the energy coefficients are computed 
for every possible scale a and time b rather 
than a sequence (am,bn) of them. For this 
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type the energy coefficients of a signal f are 
given by 

Here the coefficient C (a,b) is a func-
tion of the two continuous variables a and 
b. The graphical representation of these 
coefficients requires 3D techniques. One 
can either use 3D graphics or an equiva-
lent 2D method such as contours or col-
ored schemes. In this paper, we use the 
commercially available Wavelet Toolbox 
in the software MATLAB® which uses col-
ored schemes. To illustrate the use of this 
colored scheme we refer to Figure 2 below 
which shows a typical transform of a tem-
perature time series. The top pane in that 
figure plots the temperature time series (or 
the signal) where the horizontal axis rep-
resents the number of days since January 
first, 1990 and the vertical axis represents 
the temperature. The middle pane shows 
the coefficients C (a,b), which is where the 
color scheme is used. Here the horizontal 
axis represents the time b and the vertical 
axis represents the scale a and the color 
at the point (a,b) represents the value of 
the coefficient C (a,b) with lighter colors 
representing higher values and darker col-
ors representing lower values as depicted in 
the color key below the pane. The bottom 
pane in Figure 2 represents a cross section 
of the “3D colored picture” of the middle 
pane made by fixing the scale at a = 1 and 
changing the time b. Thus, the horizon-
tal axis represents time whiles the vertical 
axis represents the actual value of C (1,b) 
that is the value which appeared in color 
in the middle pane. This is called a coef-
ficient line. The wavelet toolbox provides 
the capability of choosing a scale level; say 
a = 20; a = 300 and so on, to draw the coef-
ficient line which would correspond to the 
chosen cross section of the colored picture. 

It turns out that computing the coeffi-
cients C (a,b) at all possible scales and times 
is not necessary to recover all information 
about the signal. We can perfectly recover the 
whole signal f from the coefficients calculat-
ed at the so called dyadic scale-space grid of 
points (am,bn) = (2m,n2m), m,n = ...,–1,0,1,.... 
The coefficients Cmn := C(am,bn) computed 
this way constitute what we call the discrete 
wavelet transform (DWT) of the signal f. 
One important feature of the dyadic points 
to be observed here is that the time values 
bn = n2m depend on the scale values am = 2m. 
This means that small scales (progressively 
negative values of m) correspond to more 
closely located time instants bn and vice 
versa. Therefore, at small scales, which cor-
respond to the fast changing components of 
the signal changes, we take closely separated 
time instances to capture any fast evolving 
events while at large scales, which corre-
spond to the slowly changing components 
of the signal, fewer time instants are neces-
sary to capture the evolving events. 

Hence, the DWT inherits all the impor-
tant properties of the CWT in addition to 
being computationally fast. The DWT of a 
signal f (t) which is represented by N values 
requires only o (n) operations which is even 
faster than the fast Fourier transform (FFT) 
which takes o (n log n) operations. Add to 
that the ability of the DWT to analyze the 
signal in both frequency and time as com-
pared to the frequency analysis only provid-
ed by the FFT.

In practice, all the wavelets correspond-
ing to large scales (say, all scales larger 
than 2M) are lumped up into one function 
φ(t) called the scaling function (see Malat 
(1998)) which has all the properties of wave-
lets except that its average value is not zero. 
The complete decomposition of a signal f in 
this case takes the form
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For each n in the above representation, 
the energy coefficient an can be thought 
of as providing weighted averages of the 
signal f over the span of the scaling func-
tion φM,n (t), while the coefficients dmn pro-
vide fluctuations (or details) around these 
averaged values at the various scales m. In 
the sequel we will be referring to this break 
down of the signal as approximation and 
details. When φM,n (t) is slowly changing, an 
provides an approximation of the averaged 
values, or the trend, of the signal f itself. 
The flatter the function φ is the closer the 
values of the an’s are to the trend in f. Such 
is the case, for example, with the scaling 
function corresponding to the Haar wavelet 
which is a completely flat function. Figure 
7 and Figure 8 below show a temperature 
time series and its trend part at level n = 11 
and a detail at level m = 7 using the Haar 
wavelet. The trend level 11 means, as dis-
cussed above, that all scales higher than 211 
days inclusive are lumped up in the scaling 
function. The detail level 7 means that the 
fluctuations at the scale 27 days are shown. 
Thus, events of duration around 128 days 
are captured at that level. 

From a different viewpoint, the coef-
ficients an and dmn also provide a measure 
of the local similarity of the signal f to the 
scaling function φM,n (t) and the wavelet 
ψmn (t), respectively. Therefore, the degree 
of smoothness of φM,n (t) tells us about the 
presence of a similarly smooth component 
of the signal or the lack thereof. 

Analysis of a signal with wavelet packet 
transforms consists of breaking down 
each of the approximation and detail 
components of the signal at each level 
into “approximation and detail”. The op-
eration count in this process is back to 
o (n log n) but we gain more insight into 

the time-frequency behavior of the signal in 
terms of sharper isolation of fast events and 
the ability to come up with an optimal de-
composition into constituent components 
(see, e.g., Walnut (2002)).

Analysis of air temperature 
with the continuous wavelet 

transform (CWT)

The temperature data is recorded on an 
hourly basis and is stored as daily means at 
Arar meteorological data collection station 
located at the domestic airport. The temper-
ature records are degrees Celsius versus days 
during the period from January 1st, 1990 to 
December 31st, 2006, a total of 6209 days. 
A very small number of data records had to 
be discarded due to measurement and/or 
recording errors. Since the wavelet toolbox 
of MATLAB® does not allow the flexibility 
of relabeling the axis, we have produced a 
conversion chart that should help see the 
correspondence between the year and the 
number of days since January 1, 1990. This 
is shown in Figure 1. Figure 2 shows the 
temperature data (top) from Arar (for a total 
of 6178 days), its continuous wavelet trans-
form (or scalogram) (middle) and the wave-
let coefficients at a scale a ≈ 1 day (bottom). 
These coefficients are of the order of 10–15 
which means that we merely see noise due 
to measurement errors (see the coefficient 
line at the bottom of the figure). 

To see the daily temperature fluctuations 
we draw a coefficient line at a scale a = 3. 
This is shown in Figure 3. The coefficient 
line indicates that there are lesser fluctua-
tions during the summer and the beginning 
of fall than the other seasons of the year. To 
see this, consider the part of the graph be-
tween day 1 and day 1000, a period of a little 
less than three years. During this period we 
see patterns of higher fluctuations followed 
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by lesser fluctuations. The first period of 
lesser fluctuations occurs at about 180 to 
280 days from Jan 1. These are the summer 
months of June, July and August along with 
the fall month of September. This pattern 
of fluctuations repeats itself. 

To see the monthly fluctuations we draw 
a coefficient line at a scale of the order of 
months. Figure 4 shows the coefficient line 
at the monthly level a = 74. This coefficient 
line is composed of slower sinusoidal fluc-
tuations on top of which we can see faster 
fluctuation of relatively small magnitudes. 
In the jargon of Fourier series, these are 
higher harmonic fluctuations. These higher 
harmonics are also visible in the scalogram 
of the continuous wavelet transform as high 
amplitude; low duration waves on top of 
regular fluctuations (see Figure 2, for scales 
around 80). Finally, the smooth seasonal 
fluctuations (Figure 5) are obtained by draw-
ing the coefficient line at the a = 370 days.

We would like to mention that long term 
trends (of scales of several years) such as 

heating or cooling trends can also be detect-
ed from scalograms by increasing the maxi-
mum scale for the analysis (say, amax = 800 
instead of the value amax = 370 depicted in 
Figure 2). However, these trends are more 
easlily detected from the discrete wavelet 
transform which we will consider next. 

Analysis with air temperature 
using discrete wavelet 

transform (DWT)

To detect the long term trend of the tem-
perature records at the Arar station we 
took the DWT of the time series with the 
Haar Wavelet and 11 levels of resolution. 
At this level of resolution, the span of each 
scaling wavelet is 211 = 2048 days and the 
whole length of the 17 year data record 
(1990-2006) is covered by 6209/2048 ≈ 
3 wavelets. Figure 6 shows the signal and 
its approximation (trend) at 11 levels. 
Each wavelet produces an average value of 
the signal in its span, which explains the 
breaks we see in the graph of the approxi-
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Figure 1	 Correspondence between the year and the number of days since January 1, 1990
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Figure 2	 Temperature records of Arar and its continuous wavelet transform

Figure 3	 Wavelet coefficient line at scale a=3
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mation a11 in the figure. A general trend 
of heating (an increase in the mean tem-
perature of about 2°C) is clear from the 
approximation signal a11. A linear regres-
sion analysis of the same data was carried 
out in Rehman and El-Gebeily and it also 
confirmed the same trend. The higher har-
monics fluctuations observed in the CWT 
(Figure 4) are still visible at the 7th detail 
level (27 = 128 days) of Figure 7.

The DWT of the temperature time se-
ries from Arar using the Meyer wavelet is 

shown in Figure 8. The Meyer wavelet has 
two features that make them very useful in 
analyzing temperature records: first, they 
are fairly smooth and second, they have 
limited frequency bands. The smoothness 
feature makes them more capable of detect-
ing the smooth component of the signal 
as discussed earlier. The finite frequency 
bandwidth enables them to detect and iso-
late the various periodic components of 
the record. As a result, we can tell that the 
smooth component of the temperature sig-
nal (a8 of Figure 8) went through a sharp 

Figure 4	 Wavelet coefficient line at scale a=74

Figure 5	 Wavelet coefficient line at scale a=370

Figure 6	 DWT of Arar temperature records with the Haar wavelet

Figure 7	 Seasonal fluctuations with higher harmonics
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change during the year 1991 at the time of 
the gulf war. In addition to this we still see 
that the heating trend as the graph tends to 
keep rising over the years. We also see the 
periodic seasonal changes in the detail d8 
(28 = 256 days, 8.5 months, or two seasons). 
As before, higher harmonic components 
are visible at the detail level d7. More details 
about the trend line a8 can be obtained 
by increasing the level of analysis to, say 
11, instead of 8. The result is shown in 
Figure 9. In this case a8 = a11+ d11+d10+ d9. 
We still get the sharp change around 1991 

as the sum of the corresponding values from 
a11, d11, d10 and d9.

Analysis of air temperature with 
wavelet packets (WP)

Wavelet packets are more efficient than 
ordinary wavelets in that they are more ca-
pable of pinpointing the distribution of the 
energy coefficients for each scale. Figure 10 
shows the wavelet packet analysis of the Arar 
temperature record. The analysis was made 

Figure 8	 DWT of Arar temperature records with the Meyer wavelet

Figure 9	 Detailed analysis of the trend line of Figure 8.



378	         M. A. El-Gebeily, S. Rehman, L. M. Al-Hadhrami and J. AlMutawa

here using the Daubichi wavelet packet db3 
with depth of analysis 2. Referring to Figure 
10, the tree diagram displays the various 
components of the analyzed signal. Node 
(0,0) corresponds to the original signal. At 
the first level of analysis the original signal is 
analyzed into two components an approxi-
mation, which corresponds to node (1,0) 
and a detail component which corresponds 
to node (1,1). At the second level of analy-
sis, both approximation signal (1,0) and the 
detail signal are again decomposed into ap-
proximation and detail. We thus obtain the 
nodes (2,0), (2,1), (2,2) and (2,3). The right 

lower pane shows the magnitudes (using a 
color scheme) of the energy coefficients for 
each of the components corresponding to 
the level 2 nodes. Thus, the bottom section 
corresponds to the coefficients associated 
with the component (2,0), the higher sec-
tion to the component (2,1) and so on. It is 
clear from the figure that most of the energy 
coefficients of the signal are concentrated in 
the (2,0) approximation component. A plot 
of the coefficients in the component (2,0) is 
shown in the left lower pane. Observe that 
the grading of the horizontal axis in the 
pane is graded only to about 1500. This is 

Figure 10  The DB3 WP analysis of the Arar temperature records
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due to the fact that in computing the succes-
sive approximations using wavelets, only ev-
ery other point needs to be kept. Thus, with 
two levels of approximation every fourth 
point (in this case, every fourth day) is kept. 
Since at each level of analysis, every compo-
nent of the signal gets broken down further 
into approximation and detail, we have the 
option of not carrying out this breakdown 
if the either one of the resulting compo-
nents possesses very small coefficients. This 
leads us to considering best trees for a sig-
nal. The result of finding the best tree for 
our temperature record is shown in Figure 
11 In this case the best tree coincides with 
the usual wavelet tree. This also confirms 
the finding that the approximation (2,0) 
contains the significant part of the signal. 
From a different viewpoint, we could ask: 
what happens if, in the wavelet packet tree 
we discard all the insignificant coefficients, 
i.e., set them equal to zero. This is the idea 
of wavelet packet compression, which is one 

of the huge success stories of wavelet trans-
forms. One way to do this compression is 
to set to zero all coefficients that are less 
than a pre-assigned threshold. Figure 12 
clarifies the compression of the temperature 
record at Arar. Referring to the upper left 
pane in Figure 12, the vertical dashed yellow 
line represents the preset threshold (a little 
more than 8), so we are requesting that all 
coefficients less than 8 be set to zero. The 
intersection of the threshold line with the 
upper pink line gives the percentage of the 
energy of the original signal which would 
be retained for the chosen threshold. The 
intersection of the threshold line with the 
lower blue line gives the percentage of the 
coefficients which would be set to zero for 
chosen threshold. In this case, by choosing a 
threshold of 8 we retain 99.7% of the total 
energy of the signal while setting about 75% 
of the energy coefficients to zero. In other 
words, we can save 75% of the storage space 
and retain 99.7% of the total energy of the 

Figure 11  Best tree for the wavelet packet analysis of Figure 9
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signal in the remaining 25% of the coeffi-
cients. Incidentally, these are precisely the 
coefficients of the component (2,0) of the 
signal which we discussed earlier. The up-
per right pane shows the reconstructed com-
pressed signal plotted in yellow on top of the 
original signal for comparison purposes. 

Wavelet analysis of daily total 
rainfall record

Here we carry out the wavelet analysis of the 
rainfall record from Arar in the same way 

as we did with the temperature record. The 
continuous wavelet transform with the Haar 
wavelet of the rainfall total (RFT) record is 
shown in Figure 13. As most of Saudi Arabia 
is barren land with very little rainfall, we see 
in the scalogram that most of the rainfall 
values are near zero (the color is close to 
the minimum color in most of the graph 
area). The coefficient line drawn at the scale 
a = 120, however, reveals an interesting pat-
tern of rain fall that repeats roughly every 
3 years. Each period of 3 years appears to 
contain an episode of higher rainfall activ-
ity in addition to one of relatively lower 

Figure 12  Compressed temperature records with the DB3 packet
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activity. The coefficient line in Figure 13 
indicates that the year 1998 (around 3000 
days) appears to have enjoyed exceptionally 
higher precipitation than the rest of the 17 
year period of recording. (See the chart in 
Figure 1). The Haar wavelet DWT shown 
in Figure 14, however, reveals more. At 11 
levels of resolution, the approximation level 
a

11
 has a decreasing trend over the past 16 

year period. The trend falls from an aver-
age RFT of 0.15mm/day to 0.11mm/day. 
This means that there is a desertification 

trend at least in the area of Arar. The pe-
riodic activity observed in the CWT is also 
visible in the details d

8
 and d

9
. We should 

point out here that, due to the sparseness 
of the data and its irregularity, the Haar 
wavelet is expected to do a better job ana-
lyzing it. This is because we do not expect 
any smooth components of the signal under 
the circumstances. This becomes clear as we 
attempt to do data compression using the 
Haar wavelet packet and compare with what 
happens when we do the same with a Meyer 

Figure 13  Continuous wavelet transform of the rainfall at ARAR
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Figure 14  DWT of rainfall records at Arar

Figure 15  Compression of the rainfall data with Haar packet
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wavelet. Figure 15 shows that we can retain 
set 93% of the coefficients to zero and still 
retain 91% of the energy. Compression with 
the Meyer wavelet (not shown here) resulted 
in retaining only 82% of the energy while 
setting 78% of the coefficients to zero. The 
discrepancy is undoubtedly attributed to 
the fact that the smooth part of the signal is 
simply nonexistent.

Analysis of the relative humidity 
record

Figure 16 shows the DWT of the relative hu-
midity at Arar with the Meyer wavelet which 
was chosen because of the apparent peri-
odic structure of the raw data. The smooth 
approximation level a

12
 seems to indicate 

that there is a long term periodic behavior 
of about 34 years. Our conjecture is that 
what we are seeing here is half a period of 
this long term trend. It should be interest-
ing to observe this long term trend in the 
coming years. The details d

11
 and d

12
 do not 

modify this behavior much because of the 
relative amplitudes of the details in compar-
ison with the approximation. The valley of 
this long term trend line coincides with the 
highest precipitation observed in Arar dur-
ing the year of 1998. The detail d

9
 shows a 

one time peak of high humidity around the 
year 1997. This peak was also observed in 
the CWT transform of the data (not shown 
here). The detail d

8
 reveals the usual season-

al periodic behavior of the relative humidity. 
The weather is most humid during the au-
tumn season of every year and least humid 
during the spring season. Figure 17 shows 
the Meyer wavelet packet transform of the 
RH data. We configured the display to show 
the energy content of each tree node and to 
show the compressed signal in the lower left 
pane. The compression performed in this 
case retains 98% of the energy while setting 
87% of the coefficients to zero. This means 

that we retain only 13% of the coefficients 
of the original signal.

Analysis of barometric pressure 
records

The Mayer wavelet DWT of the baromet-
ric pressure records is shown in Figure 18. 
The reader will notice that the decomposed 
signal exhibits the same general structure as 
that of the relative humidity and to some 
extent as that of the temperature. Again, the 
approximation component a

12
 of the signal 

appears to have a long term periodic behav-
ior as was the case with the relative humid-
ity, but with a longer period. It appears that 
the signal needs about two more years to 
come back to the same level, so we estimate 
the long term period to be about 38 years. 
The valley of this long term pressure line 
coincides with the lowest relative humid-
ity and highest precipitation of the last two 
sections. The regular seasonal variations are 
exhibited by the detail d

8
. The compression 

with the Meyer wavelet packet showed that 
100% of the energy of the signal can be 
retained while setting 84.7% of the coeffi-
cients to zero. Of course this is attributed to 
the fact that the atmospheric pressure itself 
does not vary much about its mean value, 
so all we need to keep is a subsample of the 
approximation coefficients.

Analysis of the wind speed 
record

The Meyer wavelet DWT of the wind speed 
record is shown in Figure 19. The approxi-
mation level a

12
 appears to exhibit long term 

periodicity of about 34 years as was the case 
with relative humidity and barometric pres-
sure. The seasonal variations of the wind 
speed as depicted by the detail d

8
 show a 

less regular pattern of wind speed variation. 
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Figure 16  Meyer wavelet transform of relative humidity records

Figure 17  Meyer wavelet packet transforms of the relative humidity records
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Figure 18  Meyer wavelet DWT of the barometric pressure records at Arar

Figure 19  Meyer wavelet DWT of wind speed records at Arar

The detail level d
9
 indicates a spike in wind 

speeds during 1993. Figure 20 shows the 
coefficients of the terminal nodes for both 
the Meyer wavelet packet (left) and Meyer 
wavelet DWT (right). The color code in this 
figure is the same as the one depicted in 
Figure 10. What is striking about these two 
figures is that they display large magnitude 
coefficients (pink color) for all components 
of the decomposition. This is the whole 

mark of a fractal structure of the signal 
which should be further investigated. As it 
may be expected, since all frequency ranges 
contribute significantly to the total energy 
of the signal, the compression of the wind 
speed signal does not achieve as impressive 
ratios as the other records analyzed above. 
For example, in order to retain 97% of the 
original energy, only 69% of the coefficients 
can be set to zero. 
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Concluding Remarks

The wavelet analysis of meteorological pa-
rameters can be summarized as follows:

•	 The CWT analysis of the temperature 
time series indicated that there are lesser 
fluctuations during the summer than 
the winter time in daily mean tempera-
tures. The monthly fluctuations were 
also indicated by the presence of higher 
harmonic fluctuations.

•	 The DWT analysis of the temperature 
time series performed using the Haar 
and Meyer wavelets showed a general 
trend of heating of the local air i.e. an in-
crease of about 1.5% per year. As a result 
of the smoothness of the Meyer wave-
let, the shape of the approximation, or 
trend, signal (a

8
) is not obscured by the 

wavelet shape and one can see a sharp av-
erage temperature change that occurred 
around 1991 at the time of the gulf war. 
This rapid change in temperature was 
also evident from the behavior of the 

higher frequency components d
9
 and d

10
 

around 1991.

•	 The wavelet packet compression of the 
temperature time series performed us-
ing the Daubichi wavelet packet db3 
with depth of analysis 2 resulted in re-
tention of 99.7% of the total energy of 
the signal while setting about 75% of 
the energy coefficients to zero. In other 
words, one can save 75% of the storage 
space and retain 99.7% of the total en-
ergy of the signal in the remaining 25% 
of the coefficients.

•	 The CWT analysis of rainfall data with 
the Haar wavelet revealed an interesting 
pattern of rainfall that repeats roughly ev-
ery 3 years. Each period of 3 years appears 
to contain an episode of higher rainfall 
activity in addition to one of a relatively 
lower activity. The year 1998 received ex-
ceptionally higher precipitation.

•	 The Haar wavelet DWT analysis indi-
cated a decreasing trend over the past 
16 year period in the rainfall. The trend 

Figure 20  Coefficients of the terminal nodes for the wavelet packet (left) and the wavelet tree (right)
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showed a decrease from an average RFT 
of 0.15mm/day to 0.11mm/day. This 
means that there is a desertification 
trend at least in the area of Arar.

•	 The compression with the Meyer wavelet 
packet resulted in retaining 27% of the 
data with 82% of the energy.

•	 The DWT analysis of the daily mean 
values of the relative humidity at detail 
d

8
 revealed a usual seasonal periodic be-

havior of the property. The weather was 
found to be most humid during the au-
tumn season of every year and least dur-
ing the spring season.

•	 There appears to be a long term period 
of relative humidity activity of 34 years.

•	 The compression performed retained 
98% of the energy by setting 87% of the 
coefficients to zero. This means that one 
can retain only 13% of the coefficients 
without losing the original signal.

•	 The Mayer wavelet DWT of the baromet-
ric pressure records appears to indicate 
a long term trend of periodic behavior 
of period 38 years. The period of lowest 
barometric pressure coincides with that 
of lowest relative humidity. The regular 
seasonal variations are exhibited by the 
details at level d

8
.

•	 The compression with the Meyer wavelet 
packet showed that 100% of the energy 
of the signal can be retained while set-
ting 84.7% of the coefficients to zero. 
This is because the fluctuations of the 
signal around its mean value are mostly 
insignificant.

•	 The Meyer wavelet DWT of the wind 
speed records appears to exhibit a long 
term periodic behavior of period 34 
years. The seasonal variations of the 
wind speed as depicted by the detail d

8 

exhibit a less regular pattern.

•	 The compression of the wind speed sig-
nal could not achieve impressive ratios as 
in the case of the other parameters ana-
lyzed above. In order to retain 97% of 
the original energy, only 69% of the co-
efficients can be set to zero. This means 
that all fluctuation levels about the mean 
contain significant information about 
the signal.
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