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Abstract

Purpose –The objectives of this paper are the application of sensitivity analysis (SA)methods in atmospheric
dispersion modeling to the emission dispersion model (EDM) to study the prediction of atmospheric dispersion
of NO2 generated by an industrial fire, whose results are useful for fire safety applications. The EDM is used to
predict the level concentration of nitrogen dioxide (NO2) emitted by an industrial fire in a plant located in an
industrial region site in Algeria.
Design/methodology/approach – The SA was defined for the following input parameters: wind
speed, NO2 emission rate and viscosity and diffusivity coefficients by simulating the air quality impacts of
fire on an industrial area. Two SA methods are used: a local SA by using a one at a time technique and a
global SA, for which correlation analysis was conducted on the EDM using the standardized regression
coefficient.
Findings –The study demonstrates that, under ordinary weather conditions and for the fields near to the fire,
the NO2 initial concentration has the most influence on the predicted NO2 levels than any other model input.
Whereas, for the far field, the initial concentration and the wind speed have the most impact on the NO2

concentration estimation.
Originality/value – The study shows that an effective decision-making process should not be only based on
the mean values, but it should, in particular, consider the upper bound plume concentration.

Keywords Sensitivity analysis, Emission dispersion model, Correlation analysis, Standardized regression

coefficient, Monte Carlo simulation

Paper type Research paper

1. Introduction
Because of fires and related accidents, large amounts of carbon monoxide, nitrogen oxides
(NOx), volatile organic compounds (VOCs) and other pollutants are produced. The effects of
these pollutants have increased significantly and can be short- and long-term with high
concentrations significantly affecting human health and air quality (Dadashzadeh et al., 2014;
Poudyal et al., 2012; Srinivas et al., 2016). To assess these effects, the so-called emission
dispersion model (EDM) was developed by (Chettouh et al., 2014; Hamzi, 2008). The EDM is a
deterministic model that takes into account all the phenomena associated with a pollutant in
an atmosphere during fire, including diffusion, transport and chemical kinetics in order to
estimate its concentration over a given area (Chettouh et al., 2014). The results are
deterministic estimates and the analysis does not provide accurate information about the
modeled event due to the non-consideration of the associated uncertainty and the sensitivity
analysis (SA) to the various involved parameters. Therefore, the main objective of this paper
is the estimation of several sensitivity measures related to the EDM to evaluate its sensitivity
to its input parameters variation by determining their impact on the concentration of the NO2

plume at given threshold distances (defined in relation to the target elements). This analysis is
an important contribution to the identification of sensitive urban areas in terms of air quality
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and evaluation of human exposure to pollutants. The application of the sensibility analysis is
also important in accidents management and in the definition of strategies for air quality
management in urban areas, through the prevention of future industrial accidents scenarios,
which is relevant for safety reports and to prevent wrong decisions that could have a
significant impact on the field of industrial safety (Ali and Bruen, 2016).

SA in atmospheric dispersion and fire modeling has been carried out by various studies
in different applications and based on some case studies. We cite for example the studies of
(Salvador et al., 2001; Ramroth et al., 2006; Clark et al., 2008; Hasofer, 2009; Suard et al., 2013;
Alzbutas et al., 2014; Hopkin et al., 2018; Tondini et al., 2019; Gernay et al., 2019) that
have oriented toward SA of fire propagation and heat transfer models. While the work of
(LIU et al., 2007; Bubbico and Mazzarotta, 2008; Garc�ıa-D�ıaz and Goz�alvez-Zafrilla, 2012;
Pandya et al., 2012; Gant et al., 2013; Zhan and Zhang, 2013; Girard et al., 2014; Srinivas et al.,
2016; Li et al., 2018; Dhyani and Sharma, 2018; Cao et al., 2020) aimed at the SA of
atmospheric dispersion models to study the chemical effects and ecological risks generated
by the dispersion of pollutants. These studies were based on different approaches of SA,
which varied from local to global with the use of different techniques and sensitivity
indices.

In our study, we will perform local and global SA. The obtained result is a hierarchization
of the input parameters depending on their contribution to the overall uncertainty. The SA,
then allowsmodel users to bemore informed about the confidence that can be placed inmodel
results and hence becomes a quality insurance factor (Chettouh et al., 2014).

This study is structured into sixmain sections: the second section gives the basics ideas of
fire modeling and the EDM. The third section presents a general methodology for uncertainty
and SA based on Monte Carlo simulation, the included input parameters in the SA and a case
study. The fourth section presents the different techniques used to perform the SA. An
industrial case study is analyzed, the fifth section shows numerical results and, the sixth
section completes the study with conclusions.

2. Fire modeling
Fire models can be categorized into three principal classes (Perry, 1998):

(1) Empirical models;

(2) Semi-empirical models;

(3) Deterministic models.

Due to the difficulties inherent with experiments, particularly for large-scale fires,
deterministic fire modeling is become widely used to study ignition, fire behavior and fire
spread (Ahmadi et al., 2019; Koo et al., 2020). Three main classes of deterministic models are
available: Gaussian models, zone models and computational fluid dynamics models (Ralph
and Carvel, 2018).

2.1 Emission dispersion model
The atmospheric dispersion model used in this work is the EDM, which is a computer
program that uses an elaborate mathematical algorithm to describe the complex interactions
between the thermal effects of a fire and the released pollutants by calculating the resulting
particle dispersion concentration resulting from a fire. The EDM is a general model that takes
into account all phenomena to which, a pollutant generated during a fire in the atmosphere is
subjected, including diffusion, transport and chemical kinetics accompanying the effects
representing the fire (Chettouh et al., 2014).
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Since the EDM was based on the fire–environment interaction, i.e. the coupling between
heat andmass transfer modes, the fire plume is considered to have been described in terms of
a two-dimensional, compressible, turbulent, stationary flow regime with a uniform wind
speed. Further details about the model can be found in (Chettouh et al., 2014).

With:

Ujet: Rate of pollutant; βT: Coefficient of thermal expansion;

ν: Viscosity; βm: Coefficient of mass expansion;

DT: Coefficient of thermal diffusion; ΔTmax: Maximum thermal gradient;

Dm: Coefficient of mass diffusion; ΔCmax: Maximum concentration gradient.

The results that can be obtained from this model are:

(1) Pollutant concentration fields that show the significant impact of fires on local air
quality;

(2) Thermal fields, which are due to the dispersion of pollutants.

Thus, EDM allows us to track the plume by determining the quantities of pollutants at each
position and at any time during the life cycle of the plume, which will allow the determination
of the residence time of the pollutant.

This shows the importance of numerical modeling as a decision-making tool and in
particular for feedback (Koo et al., 2020). The theory of the EDM is based on the fire–
environment dynamic, the interaction between the heat transfer modes and mass. The
development of the EDM (See Table 1) is presented in (Hamzi, 2008).

However, even with the development of numerical modeling, models are not yet able to
predict accurately fire phenomena. This gap between the reality and simulations is probably
due to the presence of uncertainties in their input data. Therefore, to be used in an effective
decision-making process, the uncertainties in ourmodel must be quantified and its sensitivity
to the input parameters must be analyzed. When carried out, sensibility analysis allows the
EDM users to be better informed about the confidence that can be placed in the model’s
results and thus becomes a quality assurance factor (Chettouh et al., 2014).
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Emission dispersion
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(Chettouh et al., 2014)
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3. Sensitivity analysis
The deterministic modeling techniques have a series of limitations from which the lack of
accuracy and/or proper validation and thus, they do not provide complete information about
themodeling accident scenarios and considerably complex and require large number of input
parameters (operating temperature and pressure, wind speed, etc.) (Bley et al., 2003; Li et al.,
2018; Pandya et al., 2012; Salvador et al., 2001). When model results are used in risk
assessment and decision-making, good practice suggests providing best quantitative
estimates of the level of uncertainty and sensitivity (such as confidence intervals) (Briggs
et al., 2012; De Rocquigny et al., 2008).

The purpose of SA is to determine which factors contribute the most to the amount of
uncertainty inmodel output (Debnath et al., 2015, Gant et al., 2013;Massada and Carmel, 2008;
Zhan and Zhang, 2013). Such analysis lead to a better understanding of how to structure the
model with respect to reality (Dimitrakopoulos and Omi, 2003; Hall et al., 2009).

3.1 Sensitivity analysis methodology
Because SA is associatedwith uncertainty analysis, Monte Carlomethod (Derwent et al., 2018;
Lemieux, 2009; Mycek and De Lozzo, 2019; Nezaratian et al., 2018) is usually used to conduct
both of them. It comprises the following steps:

(1) Assign a probability density function (PDF) to each input parameter;

(2) Generate a set of input parameters using random numbers (uniformly distributed
between 0 and 1) according to the PDF assigned to these parameters;

(3) Quantification of the output function using a set of random values according to the
model in question. The value obtained is a realization of a random variable (X) ;

(4) Repeat steps 2–3, N times (until a sufficient number, e.g. 1,000) producing N
independent output values. These N output values represent a random sample from the
probability distribution (empirical distribution) of the output function. The accuracy in
the statistics produced is improved by increasing the number of iterations. It is
therefore important to perform enough iterations so that the statistics are stable;

(5) Generate statistics from the obtained sample for the output result: mean, SD,
confidence interval (percentiles), etc. (Chettouh et al., 2014; Innal et al., 2013).

By investigating the sensitivity ofmodel parameters, a user can become knowledgeable of the
importance of those parameters in the model (Nezaratian et al., 2018; Price, 2011). There are a
large number of approaches to perform a SA depending on the features of the model at hand
(computational expense, correlated inputs, model interactions, nonlinearity, etc.) (Li and
DeLiberty, 2020).

3.2 Existing methods for sensitivity analysis
The literature contains details on the types of SA tools used for various modeling situations.
According to (Saltelli et al., 2004) SA methods may be classified into three types:

(1) Screening methods: Allow the analysis the importance of parameters and determine
the most influential among a large number that affect the results of the models. The
analysis is done qualitatively with a small number of simulations (Saltelli et al., 2004).
These methods are useful for models that are expensive to compute and have a large
number of input parameters because they are generally less computationally
demanding than other methods and are therefore useful for more complex problems
(Pandya et al., 2012).
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(2) Local sensitivity methods:Methods based on the calculation of a partial derivative at a
point (Saltelli et al., 2004), this derivative presents the sensitivity index, which
represents the variations of an output of the model following a small variation of an
input parameter (Li and DeLiberty, 2020). In this method only one parameter varies at
a time, the others remain at their nominal value; this avoids problems of cancellation
effects (when the effects of two factors influencing the output cancel each other out).
This method is simple to implement because it does not require a complex
mathematical procedure (Spitz, 2012), but may appear insufficient to characterize the
sensitivity of complex models because it does not take into account the interactions
between the parameters (Spitz, 2012).

(3) Global sensitivity methods: This analysis consists of evaluating the effect of one
parameter while all other parameters are varied simultaneously (Li and DeLiberty,
2020; Sun et al., 2020). Global SA focuses on the variability of the model output within
its range of variation. These methods take into account the interactions between
parameters without depending on the stipulation of a nominal point (they explore the
full range of each parameter). They focus on the overall effect of input variables on
themodel output by varying the input parameters and vary each over the range of the
input parameter to calculate their influence on the output (Rodriguez-Fernandez et al.,
2012). The statistical distributions for each input variable are defined in the analysis,
which explains the degrees of knowledge of the input parameters. The most popular
methods of global analysis are the Sobol method, the FAST (Fourier Amplitude
Sensitivity Test) method, the DGSM (derivative-based global sensitivity measures)
method (Kucherenko et al., 2009; Sobol, 2001), the linear regression method, etc.

4. Performing a sensitivity analysis for EDM
In order to determine the most influential parameters on the numerical dispersion model,
several methods of SA were used.

4.1 Local sensitivity analysis
There are several ways to define the sensitivity of a model in relation to its input parameters.
In this section, the sensitivity to a single input factor is first considered. In order to further,
investigate the impact of variation of the input parameters with respect to NO2 concentration

This method is simple to implement and the results are easy to communicate, this is why
this kind of techniques have been the most used among the scientific community for years
(Li andDeLiberty, 2020). Manyworks on SA in fire research and atmospheric dispersion have
adopted the OAT method such as the studies achieved by (Bessie and Johnson, 1995; Bevins
and Martin, 1978).

To carry out a local SA for EDM, the index (Si), which is proposed by Hoffman andMiller,
1983, and Bauer and Hamby, 1991, is calculated from the percentage difference in the output
when an input parameter varies from its minimum to its maximum value. Both studies
advocated the use of the full range of possible values for each parameter to assess the
sensitivity to the input parameters.

Si ¼ CUpper � CLower

CUpper

(1)

The output of each of 1,000 iterations is stored in amatrix, which gives the NO2 concentration
for all coordinates (x, y): cxy. Based on the resultant matrix, one can compute the mean matrix
ðcMean

xy Þ, the lower bound matrix ðcLowerxy Þ and the upper bound matrix ðcUpperxy Þ as follows
(Chettouh, 2016):
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4.2 Global sensitivity analysis
Various technical and overall sensitivity estimators are available and can be used to
quantitatively analyze the influence of input factors on the model output (Koo et al., 2020; Sun
et al., 2020). Among these techniques, we select the method of linear regression. Several
sensitivity indices are defined by this method, which studies the linear relationship between
the model output and input variables (Garc�ıa-D�ıaz and Goz�alvez-Zafrilla, 2012). In our study,
we will use the Pearson coefficient, which represents a sensitivity index named SRC
(sensitivity regression correlation) (Pagnon, 2012; Volkova et al., 2008). This index, through
correlation and regression analysis, allows us to perform SA’s based on the objective of
measuring the importance of each input parameter. This method is applicable to the cases
that have a linear relationship between input parameters and model output (LIU et al., 2007;
Suard et al., 2013). In our case, it is the NO2 concentration.

Assuming that EDM is linear, we can then write it in the subsequent form:

Y ¼ β0 þ
Xp

i¼1

βiXi (5)

where: βiði ¼ 1; . . . ; pÞ is the regression coefficient.
Additionally, because the variablesXi are independent, the variance ofY can be written as

follows [11, 59]:

V ðY Þ ¼
Xp

i¼1

β2i V ðXiÞ (6)

Knowing that β2i V ðXiÞ is the variance part due to the Xi variance. We define the SRC index
representing the variance part of Y response due to the variance of the variable Xi.

SRC ¼ β2i VðXiÞ
VðY Þ ¼ β2i

σ2
xi

σ2Y
¼

�
βi
σxi

σY

�2

(7)

where σ2
Xi
, σ2Y represent the variances of Xi and Yi respectively.

Knowing that the Pearson coefficient is ρXi ;Y
¼ CovðY ;XiÞ

σXiσY
and CovðY ; XiÞ ¼ βσ2Xi

So:

ρXi ;Y
¼ σXi

σY

β (8)
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and finally:

SRC ¼ ρ2Xi ;Y
(9)

The Pearson coefficient noted ρ for Xj and Yi is defined by the following relationship
(Monod et al., 2006):

ρXjYi
¼

PN
k¼1

�
½Xj�k � ½Xj�

��
½Yi�k � ½Yi�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1

�
½Xj�k � ½Xj�

�2�
½Yi�k � ½Yi�

�2

s (10)

where:
½Xj� and ½Yi� are the mean values of ([Xj]1,. . ., [Xj]N) and ([Yi]1,. . ., [Yi]N).
The Pearson coefficient ranges from �1 to 1 and allows the ranking of parameters

according to their absolute values. If the Pearson coefficient is close to�1 or 1, it means that
the relationship betweenX andY is linear (Liu et al., 2007). To measure the degree of linearity
between the input parameters Xi (i 5 1,. . ., p) and the output Y, we shall calculate R2:

R2 ¼ 1�
PN
i¼1

�
Yi � ~Yi

�2

PN
i¼1

�
Y i � Yi

�2

where:

Yi is the mean of Yi;

~Y is the value of the linear model found by linear regression.

The relationship between the input parameters and the output of the model is linear when R2

is close to 1. Based on this result, we can classify the input parameters by their degree of
influence on the model output.

4.3 Industrial case study
The analyzed case study in this paper is based on a real accident occurred in an Algerian
refining site “Skikda refinery”which is the largest refinery in Africa, wherein a tank fire took
place in the 5th October, 2005. The fire started on a first crude oil tank (S106) and extended to
an adjacent tank (S105). The tank (S106) was being filled at the time (70% full); the
specification of maximum RVP (Reid Vapour Pressure) was 0.75 kg/cm2 for a floating roof
tank (Chettouh et al., 2018). The estimate of the contents in LPG (Liquefied petroleumgas)was
3% mole with 0.75 kg/cm2 and 5% mole with 0.95 kg/cm2 (Chettouh et al., 2018).

The deterministic results are obtained by solving the EDM using the finite volumes
methodwithin FORTRAN environment (FORTRAN 6.6). The correlation analysis results are
obtained using STATISTICA 12 Software.

4.4 Estimation of SA indices
In this part, we present the conducted SA. Among the range of conditions modeled using in
EDM, four input parameters are chosen for the SA. Table 2 describes the input parameters
studied in this work: the wind speed (U), the initial concentration of NO2 (C0) the diffusion
coefficient (Sch) and the viscosity coefficient (Re). The generally used reference values are
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also indicated. The Minimum and Maximum values are based on the estimated uncertainty
band, coming from the measurement of uncertainty, lack of knowledge or the variation of the
concerned factor depending on the fire scenarios.

Uniform probability distributions have been used for each variable except the wind speed,
for which we have attributed the triangular distribution.

These positions represent the location of two different agglomerations in relation to the
accident (fire) (See Figure 1).

These positions represent the location of two different agglomerations in relation to the
emission source point (Location of burnt tank).

(1) Position A: y 5 100 m (cloud height) and x 5 0.5 km (down distance) presents the
industrial site area;

(2) Position B: y5 200m and x5 1.5 kmpresents the area neighboring the industrial site.

Inputs parameters Ref. Values Distribution

Intervals of
distribution
parameters

UnitMin Max

Wind speed (U) 5 Triangular 2 7 m.s-1

NO2 initial concentration (C0) 0.45 Continuous
uniform

0.1 0.8 %

NO2 diffusivity coefficient characterized via the
Schmidt number (Sch)

0.85 Continuous
uniform

0.7 1 –

NO2 viscosity characterized via the Reynolds
number (Re)

1,650 Continuous
uniform

1,000 2,300 –

Note(s): In the current study, the outputs are the concentrations of NOx in two different positions (A, B).
(Chettouh et al., 2018)

Table 2.
Input parameters for
sensitivity analysis
with reference values,
distribution type and
intervals of
distribution
parameters variation

Figure 1.
Presentation of the
industrial site with two
positions (A, B)
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5. Results and discussions
To perform the SA, the Monte Carlo method presented in Section 3.1 was used. This step was
preceded by running the EDM to predict the NO2 concentration under the conditions that we
have described in Table 1, the result is presented in Figure 2.

Figure 2 depicts the spatial distribution of the NO2 concentration plume at the point time
t 5 1,200 s from the beginning of the tank fire, where all the uncertain parameters are
considered.

5.1 Local sensitivity analysis results
The local sensitivity index (Si) (see Eqn (1)) is calculated using the minimum and maximum
value of the output. Obviously, Figure 3 shows that the variation of the initial concentration of
NO2 has the highest impact in the first position A (y5 100 m and x5 0.5 km) while the wind
speed is the most important parameter for the second position B (y5 200 m and x5 1.5 km).
The other parameters such as Reynolds (Re) and Schmidt (Sch) have almost no effect on the
first position, while for the second position; we can notice that they can influence the output
by 10 and 20%, respectively.

To complete the analysis and basing on Eqn (1), SInf
i ; SMoy

i ; SSup
i are proposed:

SInf
i ¼ C Inf

i � C Inf

C Inf
; . . . SMoy

i ¼ CMoy
i � CMoy

CMoy
; . . . SSup

i ¼ CSup
i � CSup

CSup

These sensitivity indices are defined to illustrate the sensitivity of each input parameter on
the variation of the lower, mean and upper limit of the NO2 concentration.

Figures 4 and 5 indicate the importance of the relative difference between the values
obtained when a single input parameter is varied (i parameter) and those observed when all
parameters uncertainties are taken into account. Indeed, this importance presents the
direction of variation of the NO2 concentration following the effects of the uncertainties in the
input data (increase or decrease).

Regarding safety, only the impact of the input parameters of the concentration variation
related to the mean and upper limit will be discussed. For the first position (A), it can be seen
from Figure 4 that the coefficient of viscosity, the coefficient of diffusivity and the wind speed
are the input parameters that have the significant impact on the mean and upper

0.4

0.2

0
1

0.8
0.6

0.4
0.2 0 0

0.5

1

1.5

2

Down distance x (Km)
Cloud height y (Km)

C
on

ce
nt

ra
tio

n 
(%

)

Figure 2.
Spatial distribution of

the NO2

concentration plume

Global and
local sensitivity

analysis of
EDM

521



concentrations, respectively. For the second position (see Figure 5), wind speed is claimed to
be themost important parameter for themean and upper concentration limits, followed by the
initial NO2 concentration.

5.2 Global sensitivity analysis results
The results of the correlation analysis technique are presented in a scatter plot for each input
parameter relative to the two positions (A, B). The statistical methods related to the
regression are then used to represent andmeasure the sensitivity of the output variables with
respect to input parameters through the SRC index. The correlation coefficient R are used to
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Figure 3.
Local sensitivity index
Si for the positions A
and B

Figure 4.
Impact of the variation
of the input parameters
on the NO2

concentration for the
first position(A)

Figure 5.
Impact of the variation
of the input parameters
on the NO2

concentration for the
second position(B)
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determine the direction of influence of the parameter on themodel output and the relationship
between the input and EDM output.N5 1,000 scenarios were generated in STATISTICA for
uniform and triangular distributions. Figures 6–9 show the correlation of EDM simulations,
linear regressions between the input parameters (wind speed, initial concentration, viscosity
coefficient and diffusion coefficient) and the EDM output (NO2 concentration).

As known in previous studies, (e.g. Bubbico and Mazzarotta, 2008; Garc�ıa-D�ıaz and
Goz�alvez-Zafrilla, 2012), Figure 6 presents a positive correlation in the two positions (A, B)
with a low influence in the first position with an R5 0.1954 and a moderate influence in the
second position includingR5 0.5308. This means that the EDM has a remarkable sensitivity
to wind speed in position B (agglomeration zone) and this influence increases the estimate of
the NO2 concentration.

Figure 7 gives us the value of R5 0.9946. This value shows the existence of a significant
positive correlation between the initial concentration of NO2 the NO2 concentration in the first
position (Refinery area), this result is consistent with a previous study of (Garc�ıa-D�ıaz and
Goz�alvez-Zafrilla, 2012). While this correlation decreases considerably in the second position
to reach R 5 0.6258.

Figure 8 presents the correlation between the viscosity coefficient and the NO2

concentration which is very low and positive in position A, with an R 5 0.0334. On the
other hand, a small increase in this correlation in the position B with R 5 0.1001.

Figure 9 shows a very low negative correlation in the two positions A and B with a
regression coefficient R5�0.1174 and R5�0.1170, respectively. This means that the NO2

concentration decreases with the variation of the diffusion coefficient
PEARSON and SRC coefficients for EDM inputs are given in Table 3. They are calculated

using the linear model function in the statistical package of STATISTICA from the 1,000
simulations. The results are shown in Figure 10.

Figures 6 and 7 show that the most important parameter uncertainty is the NO2 initial
concentration and a negative relationship between NO2 concentration and the diffusivity
coefficient, where NO2 concentration decreases as the diffusivity coefficient increases as
previously indicated in the study of (Garc�ıa-D�ıaz and Goz�alvez-Zafrilla, 2012).

The SRC is used as a sensitivity measure. Figure 10 presents the obtained SRC
coefficients. Themost important parameter is the NO2 initial concentration for both positions.
NO2 concentration is also sensitive to wind speed in the position B.

Figure 10 shows the SRC sensitivity index between the output variable (NO2

concentration) and the input parameters (wind speed, initial concentration, viscosity
coefficient and diffusion coefficient).

The results of the local and global SA (see Figures 3–8) are coherent in many respects, but
also oppose each other in some cases. These results showed that for both analyses, the initial
concentration of NO2 is the most important input parameter in position A, while in the second
position (B), the local SA shows that wind speed is the most influential parameter, while this
parameter plays a secondary role in the global SA (see Figures 3–10).

For the viscosity and diffusion coefficients, the local sensitivity showed that they have a
minor effect on the output in B position (see Figures 8 and 9). However, the global SA affirmed
that these two parameters had almost no effect on position B. Finally, both analyses showed
that the viscosity and diffusion coefficients had no effect in position A.

Figure 10 shows that the model output (NO2 concentration) is much more influenced by
the initial NO2 concentration in the first position than in the second position as shown in
Figure 8. This comes back to the high NO2 concentration released by the fire at the industrial
site (Position A), whereas as one moves away from the fire, this concentration will
progressively decrease as well as its effect on the model output, but it is still the most
important parameter in both positions A and B.
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Nuage de Points: Vitesse du vent par Concentration
Concentration = 0.24161 + 0.09509 * Vitesse du vent

Corrélation: r = 0.19541
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Nuage de Points : Var1 par Var2
C = 0.03209 + 0.45527 * Co

Corrélation: r = 0.99466
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Nuage de Points: Var1 par Var2
C = 0.25877 + 0.11E–4 * Re

Corrélation: r = 0.03348
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Nuage de Points: Var1 par Var2
C = 0.41356 – 0.1613 * Sch

Corrélation: r = –0.1174

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05

Coefficient de diffusion Sch

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

C
on

ce
nt

ra
tio

n

0.95 Int. Conf.

Nuage de Points : Var1 par Var2
C = 0.47E-3 – 0.3E-3 * Sch

Corrélation: r = –0.1170

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05

Coefficient de diffusion

–0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

C
on

ce
nt

ra
tio

n

0.95 Int. Conf.

(a)

(b)

Figure 9.
Correlation between
diffusion coefficient

and NO2 concentration
over its range of
uncertainty for

positions A and B

Global and
local sensitivity

analysis of
EDM

527



The NO2 concentration appears to be quite sensitive to wind speed at position B and very
insensitive at position A. This can be explained by the fact that at position A, the plume
released by the fire is very dense and driven at a high speed (jet speed) which will control its
transport and orientation and thus the variation in wind speed cannot have a great effect.
However, in the second position, the density of the plume decreases and subsequently the
dispersion of the plumewill be dominated by the effect of the wind speed and especially when
it increases in altitude and thus the variation of the wind speed will have a considerable effect
on the output of the EDM.

The variation in the viscosity coefficient and diffusion coefficient does not seem to have
too much influence on the NO2 concentration. Indeed a variation of the viscosity coefficient
induces a change of 0.11% at the outlet in position A and 1% in position B. At this level, it
should be pointed out that this parameter varies in the opposite direction to the NO2

concentration in position A and this means that its variation leads to a decrease in the
estimate of the level of NO2 concentration and this is very dangerous from the point of view of
industrial safety, since it can lead to underestimates of NO2 levels and this can be detrimental
to the health of the population.

While for the diffusion, coefficient its variation leads to a change in the NO2 concentration
of 1.37% at position A and 1.4% at position B.

Therefore, some input parameters may have gainedmore importance in the global SA and
others have lost it, and the same applies to the local SA. This discrepancy in some of the
results of the local and global SAmay be due to the nature of each analysis, in that one focuses
on the value of the response (local sensitivity), while the other focuses on its variability (global
sensitivity) and considers the effects of other input parameters on the input parameter in
question. In addition, the signs of the coefficients are identical between the local and global
analyses.

It may be noted that the same input parameters may have more importance in the global
SA and less importance in the local SA. This is due to the nature of each analysis; the local SA
is concerned with the value of the response, while the global SA is interested in its variability
and takes into account the effects of the other input parameters on the concerned input
parameter.
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The results of this study can be of some help for risk analysts in optimizing the resources
allocation when carrying out industrial risks analysis studies.

6. Conclusion
Fire deterministic modeling does not consider uncertainty and provide complete information
about the modeling scenario because of the lack of information in the input parameters.
Additionally, SA represents an essential tool for the decision-making processes.

The novelty of this study is the SA of EDM, to determine the effect of four parameters on
the estimation of NO2 concentration generated by an industrial fire. This can determine the
performance of the EDM considering uncertainty in input parameters.

First, the model was run to predict deterministic dispersion of NO2 from an industrial fire
under conditions that were described in Section 4, and the spatial distribution of the
concentration plume was determined. Next, we have performed a local and global SA to
determine the influence of four input parameters uncertainties on the NO2 concentration. The
local SA was carried out. We opted to carry out this study using new sensitivity indicators
that allow the identification of which parameters have the most influence on the EDM output
at two different agglomerations (Position A and B). The Global SA was carried out using the
correlation analysis and results have been obtained using STATISTICA Software. The
results showed that the output of the EDM is highly sensitive to the initial NO2 concentration,
whereas it is significantly affected by wind speed. While the effect of the two coefficients of
viscosity and diffusion is insignificant. The SA performed using the linear regressionmethod
and the SRC sensitivity index confirmed the results obtained by the local SA and added
information on the direction of influence of each input parameter on the NO2 concentration.

It has been shown that, for the far field, the initial concentration and the wind speed have
the most impact on the NO2 concentration estimation. The study also has shown that an
effective decision-making process should not be based only on the mean values of the plume
concentration, but it should, in particular, consider the upper bound plume concentration.
Finally, this study indicate that, after performing an uncertainty and SA, the EDM becomes
very useful for estimatingNO2 concentration at different distances in the field of hydrocarbon
industries.

Due to the lack of information, our study was limited to four input parameters and only
one interest value. In order tomake the EDM resultsmore realistic, it is recommended to carry
out further studies by analyzing more input parameters for several interest values (thermal
effect T) using other more complex SA techniques such as the Sobol method, the FAST
(Fourier Amplitude Sensitivity Test) method and the DGSM.
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