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Abstract
Purpose – The purpose of this paper is to highlight the use of the big data technologies for health and safety
risks analytics in the power infrastructure domain with large data sets of health and safety risks, which are
usually sparse and noisy.
Design/methodology/approach – The study focuses on using the big data frameworks for designing a
robust architecture for handling and analysing (exploratory and predictive analytics) accidents in power
infrastructure. The designed architecture is based on a well coherent health risk analytics lifecycle.
A prototype of the architecture interfaced various technology artefacts was implemented in the Java language
to predict the likelihoods of health hazards occurrence. A preliminary evaluation of the proposed architecture
was carried out with a subset of an objective data, obtained from a leading UK power infrastructure company
offering a broad range of power infrastructure services.
Findings – The proposed architecture was able to identify relevant variables and improve preliminary
prediction accuracies and explanatory capacities. It has also enabled conclusions to be drawn regarding the
causes of health risks. The results represent a significant improvement in terms of managing information on
construction accidents, particularly in power infrastructure domain.
Originality/value – This study carries out a comprehensive literature review to advance the health and
safety risk management in construction. It also highlights the inability of the conventional technologies in
handling unstructured and incomplete data set for real-time analytics processing. The study proposes a
technique in big data technology for finding complex patterns and establishing the statistical cohesion of
hidden patterns for optimal future decision making.
Keywords Big data analytics, Health and safety, Machine learning, Health hazards analytics
Paper type Research paper

1. Introduction
Occupational accidents are things of worry in modern society, especially in construction
sites where a high number of construction activities take place (Zhu et al., 2016). The power
infrastructure delivery sector, for instance, has high incidences of nonfatal occupational
injuries as workers using heavy machinery are confronted with health risks, such as
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radiation, dust, temperature extremes and chemicals amongst others (McDermott and
Hayes, 2016). According to the UK Health and Safety Executive, a total cost of £4.8bn was
expended in 2014/2015 for workplace injury (HSE, 2016). Similarly, repair costs of buried
communication lines are significant when disrupted during excavations (McDermott and
Hayes, 2016).

Several machine-learning techniques have been used for health and safety risks
prediction in construction. For instance, decision trees (Cheng et al., 2011), the generalised
linear model (Esmaeili et al., 2015) and fuzzy-neural method (Debnath et al., 2016) have all
been used to analyse incident data to reduce accident rates. Techniques, such as the
Bayesian network, were used to quantify occupational accident rates (Papazoglou et al.,
2015), and fuzzy Bayesian networks for damaged equipment analysis (Zhang et al., 2016).
Others are the bow tie representation for occupational risks assessment ( Jacinto and Silva,
2010), and Poisson models for occupational injury impacts modelling (Yorio et al., 2014).

However, a significant problem associated with these existing models is their limited
ability to process large-scale raw data since considerable effort is needed to transform
them into an appropriate internal form to achieve high prediction accuracy (Esmaeili et al.,
2015). Construction accident data are typically large, heterogeneous and dynamic (Fenrick
and Getachew, 2012), nonlinear relationships among accident causation variables
(Gholizadeh and Esmaeili, 2016), imbalance data and appreciable missing values
(Bohle et al., 2015). Besides, these techniques simplify some key factors and pay little
attention to analysing relationships between a safety phenomenon and the safety data
(Landset et al., 2015).

Based on the preceding, the big data technology due to its parallel processing feature
and ability to efficiently handle high dimensional, noisy data with nonlinear relationships,
will be beneficial for health and safety risks analytics in the power infrastructure domain.
Also, the technology will uncover potential factors contributing to accidents in this
domain. The objectives of this study are, therefore, to chart lifecycle stages of occupational
hazards analytics and develop a big data architecture for managing health and
safety risks.

1.1 Big data for health and safety risk analytics
Big data is an emerging technology, which refers to data sets that are many orders of
magnitude larger than the standard files transmitted via the internet (Suthakar et al., 2016).
There is tremendous interest in utilising information in big data for various analytics
(exploratory, descriptive, predictive and prescriptive) to determine future occurrences. Most
importantly, Big data technologies support analytical techniques for occupational health
and safety risk analytics; thus, a system being proposed in this study, named Big Data
Accident Prediction Platform (B-DAPP) offers unparalleled opportunities to minimise
occupational hazards at construction sites. The seamless combination of the following
technologies: big data, health and safety, and machine learning is an outcome of a robust
health and safety risk management tool to help stakeholders in making appropriate
decisions to minimise occupational accidents in power infrastructure projects.

Health and safety risk analytics is dependent on a high-performance computation and
large-scale data storage requiring a large number of diverse data sets of health and safety
risks, and machine-learning knowledge to successfully provide the needed analytical
responsibilities. The data sets, however, are unreliable, unstructured, incomplete and
imbalanced (Chen et al., 2017). Hence, storing the data sets using conventional technologies
and subjecting them to real-time processing for advanced analytics is highly challenging.
A robust technique for finding complex patterns and establishing the statistical cohesion of
hidden patterns in such data sets for optimal future decision making is inevitable. Thus,
motivating the use of big data technologies to address these challenges.
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1.2 Research justification
There exists an apparent technological gap in existing literature regarding health and
safety risk management. In particular, there is limited research on the application of big data
techniques for managing health and safety risk in power infrastructure. The development of
a robust B-DAPP for health and safety risk is the objective of the ongoing R&D effort. The
proposed tool will provide stakeholders with well-informed and data-driven insights to
reduce accidents and incidents at construction sites. Therefore, a big data architecture is
proposed for managing health and safety risks. Also, a presentation of components and
relevant technologies of the proposed architecture necessary for storing and analysing
health and safety risk data sets for real-time exploration and prediction is made. The term
“Architecture” as used in this text refers to high-level structures of a software system.
Similarly in the context of this study, “Accident” is an unplanned, unpremeditated event
caused by unsafe acts or conditions resulting in injury while “Incident” is an event causing
actual damage to property (including plant or equipment) or other loss with potential to
cause injury.

The remainder of the paper is structured as follows: Section 2 discusses on the research
methodology, big data analytics and big data ecosystem. Section 3 deliberates on the
health hazards analytics lifecycle. Section 4 presents the proposed big data architecture for
health and safety risk management while Section 5 presents the preliminary outcomes.
Conclusions and future work are given in Section 6.

2. Methodology
In this section, a discussion on the methodology employed in this research is made.
Foremost, a comprehensive literature review is performed to advance the health and safety
risk management with respect to the system architecture and system analytics lifecycle.
Then the proposed architecture and occupational hazard analytics lifecycle are validated in
a preliminary analysis of the health and safety risk related data. To be able to offer a holistic
big data architecture and occupational hazard analytics lifecycle, a careful review of
existing literature on health and safety risk prediction models, big data, and machine
learning have been carried out. In this regard, online databases such as Journal of Big Data,
Big Data Research, Safety Science, Journal of Construction Engineering, Journal of Decision
Systems, Journal of Safety Research, Journal of Construction Engineering and Management,
Reliability Engineering and System Safety are searched for research articles between 2005
and 2017. Recent reviews of research and books on big data analytics are also considered
(Camann et al., 2011; Gandomi and Haider, 2015; Guo et al., 2016).

Examples of search words used include: “managing health and safety risks”, “design
strategies for occupational hazards in construction”, “Prediction models for occupational
health risks”, “Big data in construction”, “Big data based application architecture” and “Big
data analytics”. In general, 94 publications were selected even though literature search was
in-exhaustive as a result of a vast amount of published articles. However, it is believed that
the literature search has captured a representative balanced sample of the related research.
Studies in which big data is used to develop enterprise applications were included, and those
focusing on road traffic-related hazards and health hazards in domains not related to
construction (e.g. mining and fishing) were excluded. This elimination procedure further
reduced the selected articles to 66. These articles are furthermore scrutinised for relevancy
by reading abstracts, introductions and conclusions. Ultimately, the articles are reduced
to 50. Table I depicts how these selected articles are relevant and contributing to the
development of the proposed architecture, which is essentially based on three concepts,
namely, big data, health and safety risk and machine learning. In this study, we introduce
the proposed B-DAPP architecture and the occupational hazards analytics lifecycle stages
for managing incidents and accidents.
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2.1 Big data analytics
Big data consists of large and complex data sets often difficult to manipulate using the
conventional processing methods. It has six defining attributes (Gandomi and Haider, 2015),
which are volume, variety, velocity, veracity, variability and complexity, and value. The term
“volume” represents the magnitude of the data (measured in terabytes, petabytes and beyond).

Contribution to health and safety risk analytics architecture
No. Article Health and safety risk Machine learning Big data

1 Liu and Tsai (2012) X X
2 Zhou et al. (2015) X
3 García-Herrero et al. (2012) X X
4 Groves et al. (2007) X
5 Li et al. (2016) X X
6 Soltanzadeh et al. (2016) X
7 Power (2014) X
8 Yi et al. (2016) X X
9 Cheng et al. (2011) X X
10 Silva et al. (2017) X
11 Raviv et al. (2017) X
12 Liao and Perng (2008) X
13 Li and Bai (2008)
14 Törner and Pousette (2009) X
15 Pinto et al. (2011) X
16 Tixier et al. (2016) X X
17 Hallowell and Gambatese (2009) X
18 Pääkkönen and Pakkala (2015) X
19 Venturini et al. (2017) X
20 Suthakar et al. (2016) X
21 Najafabadi et al. (2015) X X
22 Landset et al. (2015) X
23 Tsai et al. (2015) X
24 Zang et al. (2014) X X
25 Jin et al. (2015) X
26 Rahman and Esmailpour (2016) X
27 Al-Jarrah et al. (2015) X
28 Zhang et al. (2016) X X
29 Love and Teo (2017) X X
30 Rivas et al. (2011) X X
31 Guo et al. (2016) X X
32 Zou et al. (2007) X
33 Wu et al. (2010) X
34 Carbonari et al. (2011) X
35 Weng et al. (2013) X X
36 Naderpour et al. (2016) X X
37 Yoon et al. (2016) X
38 Favarò and Saleh (2016) X X
39 Jocelyn et al. (2017) X X
40 Papazoglou et al. (2017) X X
41 Papazoglou et al. (2015) X X
42 Fragiadakis et al. (2014) X X
43 Ciarapica and Giacchetta (2009) X X
44 Khakzad et al. (2015) X X
45 Galizzi and Tempesti (2015) X
46 Gürcanli and Müngena (2009) X X
47 Debnath et al. (2016) X X
48 Nanda et al. (2016) X X
49 Zeng et al. (2008) X
50 Guo et al. (2016) X X

Table I.
Summary of

articles reviewed
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“Variety” is the structural heterogeneity in a data set while the “Velocity” is the rate of
generating data. “Veracity” is the unreliability inherent in data sources while “Variability”
(complexity) represents the variation in data flow rates. Finally, “Value” measures the
information extracted from historical incident data sets for optimal control decision to mitigate
incidents and reduce their impact.

These attributes are evident in a typical power infrastructure health and safety data set,
which is typically large, heterogeneous and dynamic (Fenrick and Getachew, 2012). Big data
analytics is a concept that inspects, cleans, transforms and models the big data to discover
useful information to support decision making (Power, 2014). The big data analytics have
rich intellectual traditions and borrow from a wide variety of related fields, such as
statistics, data mining, business analytics, knowledge discovery from data and data science.
The forms of big data analytics are descriptive (Schryver et al., 2012), predictive (Esmaeili
et al., 2015), prescriptive (Delen and Demirkan, 2013) and causal (Schryver et al., 2012).

2.2 Big data for safety risk management
Awide variety of technologies and heterogeneous architectures are available to implement big
data applications. Since this paper intends to develop a robust big data architecture for health
hazards analytics, a brief discussion of tools and big data platforms to facilitate the creation of
a compact architecture and increase the understanding of the concept is made. Primarily,
focusing on the Hadoop ecosystem, a system designed for solving big data problems.

2.2.1 Hadoop ecosystem. Hadoop is a MapReduce processing engine with distributed file
systems (White, 2012). However, it has evolved into a vast web of projects (Hadoop
ecosystem) related to every step of a big data workflow. The concept now is being referred
to as the Hadoop ecosystem, which encompasses related projects and products developed to
either complement or replace original components. Further examination of the two concepts
for ease of understanding follows.

The Hadoop project consists of four modules (White, 2012):

(1) Hadoop distributed file system (HDFS) is a fault-tolerant file system designed to
store massive data across multiple nodes of commodity hardware. It has a master-
slave architecture that is made up of data nodes and name nodes. Data nodes store
blocks of the data, retrieve data on request and report to the name node with
inventory. The name node keeps records of the inventory and directs traffic to the
data nodes upon client requests.

(2) MapReduce Data processing engine. A MapReduce job consists of a map phase and
a reduce phase. A map phase organises raw data into key/value pairs, while the
reduce phase processes data in parallel.

(3) YARN (“Yet Another Resource Negotiator”) is a resource manager of the Hadoop
project introduced to address the limitations of the MapReduce. It separates
infrastructures from programme representations.

(4) Common is a set of utilities required by the other Hadoop modules. These include
compression codecs, I/O utilities, error detection, proxy users authorisation,
authentication and data confidentiality.

The Hadoop ecosystem consists of several tools built on top of the core Hadoop modules
described above to support researchers and practitioners in all aspects of data analyses.
The ecosystem structure has the following layers: storage, processing and management.
Figure 1 depicts examples of standard tools used in big data applications. The right
selection requires in-depth knowledge of critical features of these platforms and the
characteristics of the problem to be solved. In the case of health hazards analytics,
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the platforms to adapt as a result of increased workload, outweighs the rest of the selection
criteria. In the real sense, Hadoop ecosystem is made up of well over 100 projects, and
readers are referred to (White, 2012) or the Hadoop website for more information:

(1) Storage layer: this layer includes the HDFS described earlier and non-relational
databases (NoSQL). Non-relational databases are nested, semi-structured and
unstructured data that support machine-learning tasks. These databases use the
following data representation models: key-value stores (i.e. Redis), document stores
(i.e. MongoDB), column-oriented data (i.e. HBase) and graph-based models (Neo4J).
The graph model is regarded as more flexible than other models.

(2) Processing layer: this layer carries out the actual analysis using YARN, which
allows one or more processing engines to run on a Hadoop cluster. Additionally, a
layer has frameworks for data transfer, aggregation and interaction. Examples
include Flume, Sqoop, Hive, Spark and Pig. Flume collects, aggregates and moves
data log in HDFS. Kafka is a distributed messaging system on HDFS, and Sqoop
transports bulk data between the HDFS and relational databases. Hive is a query
engine for querying data stored in the HDFS and NoSQL databases. Spark supports
iterative computation, and it improves on speed and resource issues by utilising
in-memory computation. Finally, Pig offers an execution framework and data flow
language to support user-defined functions written in Python, Java, JavaScript, etc.
Machine-learning frameworks are used to perform machine-learning tasks in
Hadoop. Examples are Mahout, H2O, etc. Mahout is one of the more well-known
machine-learning tools. It is known for having a wide selection of robust algorithms,
but with inefficient runtimes due to the slow MapReduce engine. H2O provides a
parallel processing engine, analytics, math and machine-learning libraries for data
pre-processing and evaluation.

(3) Management layer: this layer has tools for user interaction and high-level
organisation. It carries out functions such as scheduling, monitoring, coordination
and amongst others. Examples of tools available in this layer are Oozie, Zookeeper
and Hue. Oozie is a workflow scheduler, which manages jobs for many of the tools in
the processing layer. Zookeeper provides tools to handle the coordination of data
and protocols and can handle partial network failures. It includes APIs for Java and
C and also has bindings for Python and REST clients. Hue is a web interface for
Hadoop projects with support for widely used Hadoop ecosystem components.

Distributed File System
HDFS

NoSQL Data
HBase, MangoDB

Storage

Processing

Resource Management
YARN

Batch processing
MapReduce

Iterative Batch 
processing

Spark

Real-Time 
Processing

Storm

Machine 
Language

Mahout, H2O

Data Flows
Pig, 

Cascading

Query
Hive

Data 
Integrator

Flume, sqoop

Graph 
Analytics

GraphX, Hama

Management
Coordination
Zookeeper

Workflow Scheduler
Oozie

Web Interface
Hue

Figure 1.
Hadoop ecosystem
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3. Proposed health hazards analytics stages
Developing a health hazards analytics tool for health and safety risk data is a challenging task
since the data are typically dynamic (Fenrick and Getachew, 2012), and unbalanced with
significant missing values (Bohle et al., 2015). Besides, the traditional accident-causingmodelling
may ignore or simplify some key factors as well as assume the same format for the input data.
Thus, an efficient methodology to address these challenges requires a well-articulated process to
break the task into smaller manageable stages to ensure adequate preparation of various
analytical approaches. In this section, a discussion on the lifecycle of the proposed big data
architecture for the health hazards analytics tool is made. The lifecycle has six stages (see
Figure 2) that are iteratively executed to suit the requirements of the proposed tool.

3.1 Data preparation
Data preparation is a procedure to detect and repair errors in the data set. For the health
hazards analytics, sufficient data quality is necessary for high-quality analytics. Thus, data
from various sources are obtained, transformed and loaded into the centralised data store.
Before this, outliers are inadvertently eliminated using techniques such as mean/mode
imputation, transformation and binning. Missing data issues should also be solved using
appropriate technology. The k-nearest neighbour imputation and mean/mode imputation
are few examples to eliminate the missing data problem. Apparently, machine-learning
techniques can also be applied to quickly filter through hundreds of thousands of narratives
(texts) to accurately and consistently retrieve and track high-magnitude, high-risk and
emerging causes of injury. The retrieved information is then utilised to guide the
development of interventions to prevent future incidents.

In the event of having large data, methods for parallel data movement may be required,
which may necessitate using the appropriate component of the Hadoop ecosystem. Data are
often analysed to get familiar with the health and safety risk as it pertains to the
construction domain. For the sake of preliminary analysis presented here, the health and
safety data are provided as .csv files that are stacked on the Hadoop cluster. The respective
files are queried to retrieve specific details on health and safety hazards such as injured
body parts, loss type injury and damaged equipment amongst others. For this purpose, tools
like Apache Flume are of immense relevance to capture current versions of data sets.

3.2 Exploratory analytics and model selection
For the health hazards management, the analysis starts with exploratory analytics and then
to the predictive analytics. For each activity in the proposed tool, a clear objective is
essential for the right selection of analytical approaches (prescription, exploratory,
predictive, etc.) to execute. The data exploration of health and safety records is performed to
understand the relationship between different explanatory variables. This exploratory data
analysis informs the selection of relevant variables to build a robust health hazards

Development of
analytics models

Data Preparation

1
Exploratory

analytics and
model selection

2

Parameters
extraction and

model execution

4
Prescriptive

analytics

6 Predictive
analytics and

health hazards
forecasting

5

3

Figure 2.
Stages of the health
hazards analytics
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prediction model. In this study, a visualisation technique is used for exploratory data
analysis. At this phase, the purpose of the analysis is to capture essential predictors and
independent variables while eliminating the least relevant ones for building the model.
Variable selection methods include All Possible regression, Stepwise Forward regression,
Best Subset regression, etc. These selection methods are often iterative and require a series
of steps to identify the most useful variables for the given model. Tools such as R Studio
could be exploited to build these models.

3.3 Development of analytics models
In this stage, analytics models are created for health and safety risk prediction using robust
big data analytics techniques. The data are divided first into the training and test sets. The
analytics models are then fitted to the training data and evaluated using the test data.
Models with optimal accuracy or higher predictive power are selected. Often, this step may
involve dealing with certain optimisation issues such as multicollinearity. The best model is
selected and deployed to predict health and safety risk from a large volume of data. Many
times the production environment may require adjusting and redeploying models to support
more practical situations (Camann et al., 2011).

3.4 Parameters extraction and model execution
Here, vital parameters are extracted to execute the predictive models. Parameters such as
task, equipment type, project complexity, etc. are extracted and the relationship between a
safety phenomenon and safety data explored to uncover potential factors that contribute to
the likelihood of accidents. These relationships bring those potential trends into the focus
that could be utilised to predict the health and safety risk of an infrastructure project under
execution. A series of transformations are applied to make the application user friendly;
specifically, by standardising contents using the ifcOWL ontology (Chaudhuri and Dayal,
1997). The data are then stored as graph-annotated formats to support broader
computations required from the proposed tool.

3.5 Predictive analytics and health hazards forecasting
Health hazards prediction provides the necessary foundation for understanding causes and
types of health and safety risk arising from a construction project in execution. Thus, this
stage employs predictive models generated through the big data analytics approaches to
analyse health and safety risk database and give notice of a possible health hazard
occurrence. Indeed, the critical thing about this evaluation is the accuracy of the health and
safety risk prediction models that are employed.

The traditional accident-causing modelling has the following limitations: may ignore or
simplify some key factors, uses qualitative analysis, and focuses on causality analysis and
explanations of an accident (Landset et al., 2015). Hence, these methods pay little attention to
the analysis of relationships between a safety phenomenon and safety data. They are also
unable to uncover potential factors that contribute to the likelihood of accidents, such as
frequency, relevance, locale and timeliness.

The development of robust health hazards prediction models is the ultimate goal of this
lifecycle, and using the prediction models, comprehensive accident and equipment damage
forecasts are generated to organisations implement strategies and techniques to improve the
safety of their construction sites.

3.6 Prescriptive analytics
This phase optimises various safety strategies based on myriad factors (the interaction
between deficiencies in work teams, workplace, equipment and materials, weather, etc.)
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to recommend the best course of action for a given situation. It uses simulation and
optimisation to offer the best strategy to employ for different health and safety risks.
Consequently, a large number of alternative optimisation plans are generated and converted
into user-friendly prescriptions for stakeholders to aid in data-driven decision making for
minimising accidents.

3.7 Analysis and preliminary results
The proposed architecture is further assured and validated with the objective data, obtained
from a leading UK construction company, offering a broad range of power infrastructure
services, including building and refurbishing overhead lines, substations, underground
cabling, fibre optics, etc. The company uses a relational database to store the health and
safety risks data, which consist of a large number of power infrastructure projects
constructed over 13 years (2004–2016) across five UK regions. Each time an incident (or
hazard) occurs, a digital record is created in the database. Details of some of the relevant
explanatory variables in the database are shown in Table II.

A subset of 5,000 randomly selected projects from 20,000 projects in total was used for a
preliminary evaluation and analysis presented in this study. The criteria for this selection
include project types (i.e. overhead lines, cabling and substations) and construction mode
(i.e. new built, refurbishment). The distribution of data across the UK regions will help to
generate advanced visualisations such as geographic heat map. Data from the relational
database are accessed via the front-end application and exported to comma-separated files
(.csv). Plainly, occupational hazards data of 5,000 projects will not be labelled as big data to
justify the use of data-intensive platforms for its analysis. However, the approach adopted in
this study can be used to analyse larger sets of health and safety risk data. Exploratory data

Variable Meaning

Incident reference Identification of a given incident
Project type The specific project (overhead line, cabling, offshore, etc.)
Project contract The nature construction project being built (i.e. new built, maintenance, refurbishment)
Region The specific region of the construction site (Scotland, North, South East, Midlands, etc.)
Sub-region The sub-region where the site is located, i.e. Yorkshire East, Midlands North, East

England, Tyrone, etc.
City UK cities where the construction site is located
Location A specific area or location of the site
Client An organisation using the services of the power infrastructure company
Equipment type Specifies the machinery (e.g. drill, hammer, haulage, etc.) used for a task
Age The age of the victim at the time of the accident
Year The year when the health hazard occurred
Season External factor such as the weather
Month The month (1–12) when the incident occurred
Time The period incident happened (0–6, early morning; 6–12, morning; 12–18, afternoon;

18–23, evening)
Day of the week Day (1–31) when the accident occurred
Weekday The weekday, i.e. Monday, Tuesday, Wednesday, etc.
Task Specific task or operation to be carried out (excavating, lifting, cutting, etc.)
Accident type The type of accident, for instance, fall, trip, struck by, inhalation, caught in/between, etc.
Injury type The physical consequence for a victim, i.e. first aid, fatal, no injury, etc.
Severity cost Financial cost incurred as a result of the accident
Hazard type Forms of health hazards, for example, illness, injury, loss or damage, etc.
Injured body part The part of the body that is injured, i.e. fingers, shoulder, head, back, etc.
Total cost The cost of the project
Equipment Part of the equipment damaged during operation

Table II.
Explanatory variables
in the database
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analytics is applied to understand the underlying trends in the data using geographical and
chronological dimensions. Thus, a variety of visualisations such as bar plot, box plot and
geographic heat map are used for data investigation.

4. Proposed big data architecture for health hazards analytics
This section discusses the proposed big data architecture for health hazards analytics
(see Figure 3). Components of the architecture are the application layer, analytics and
functional model layer, semantic layer and data storage layer which are discussed in
subsequent subsections.

4.1 Data storage
This layer is the data source (finance and health and safety risks), which are needed for
efficient functioning of B-DAPP and analytics models (predictive and prescriptive)
development. The finance data include information such as project cost, margin, labour cost,
material cost, etc. The health and safety data contain historical occupational risk data while
multimedia data consist of images and videos depicting accidents scenes.

As a result of the diverse nature of data to be stored in this layer, a NoSQL database
(i.e. MongoDB, Neo4J, Oracle NoSQL) is used for the implementation due to its robust
storage mechanisms and efficient handling of structured, semi-structured and unstructured
data (Leavitt, 2010).

Exploratory
analytics
models

Prescriptive
analytics
models

Health and
Safety Risk

Visualisation

Analytics and Functional Model layer

Infor
plugin

Health and Safety
Risk Platform

Application layer

Semantic layer

Data sources

Health and safety
DataFinance Data MongoDB

Neo4J
Oracle NoSQL

Multimedia
Data

Predictive
analytics
models

Figure 3.
B-DAPP architecture
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4.2 Semantic layer
This layer provides the data exchange formatting and data provisioning to the application
layer. The data exchange formatting allows the sharing of a common data format in the
entire system. The DDAXML is used to share data among different modules in the system
since it is an industrially supported schema for sharing information. The data provisioning
functionality provides the application layer of the architecture with seamless access to
databases through the Representation State Transfer (REST) web service. This database
access approach is considered the most appropriate due to the different nature of health and
safety risk data.

4.3 Analytics and functional model layer
The significance of health and safety risk management tool lies in its ability to analyse and
promptly act upon complex and high volume data. The layer has one functional model
(health and safety visualisation) and three analytics models (discussed earlier), which are
exploratory analytics, predictive analytics and prescriptive analytics. As discussed earlier,
predicting and managing health hazards are data-driven and highly intensive.
Consequently, the Apache Spark engine was chosen over the MapReduce to build the
analytics (predictive and prescriptive), due to its efficient in-memory storage and
computation (Ryza et al., 2015). The analytical pipelines for health hazards management are
actualised using SparkR, H2O and GraphX.

During each iteration in the analytical pipeline, different predictive models for health
hazards are explored and optimised for optimum accuracy.

The H2O framework is selected because of its rich graphical user interface and numerous
tools for developing deep neural networks models. Additionally, it offers a comprehensive
open source machine-learning toolkit that is suitable for big data (Landset et al., 2015). It also
provides tools for varied machine-learning tasks, optimisation tools, data pre-processing
and deep neural networks. Additionally, it offers coherent integration with Java, Python, R
and R Studio, as well as Sparkling Water for integration with Spark and MLlib. Prior to or
during an infrastructure project construction, health hazards are predicted and
disseminated to stakeholders to help in mitigating the impact of hazards.

4.4 Application layer
This layer is built by exploiting its powerful API programs. The end users of the tool are
stakeholders (engineers, health and safety officers, site managers, top level directors, etc.).
The explanatory variables for infrastructure projects under B-DAPP are captured through
appropriate the user interface and loaded to the HDFS and then to the Triplestore. Spark
Streaming triggers the analytics pipeline to predict health hazards and suggests actionable
insights to minimise health hazards. The predictions and prescriptions are communicated as
the Predictive Model Markup Language. Stakeholders are provided with information to
manage health hazards effectively.

5. Results and discussions
The prototype of the B-DAPP architecture is implemented by considering and interfacing the
various technology artefacts. A sample screenshot produced by simulating the B-DAPP
system is as shown in Figure 4, where the system predicts probable and number of injuries to
body parts after the specification of input parameters (i.e. “Project type”, “Region”,
“Operation”, etc.). It informs stakeholders of probable risks and allowing them adequate
attention to risk factors when managing occupational hazards to achieve a safer environment.

The B-DAPP architecture is evaluated using exploratory data analysis and some
preliminary results are provided. The purpose of this evaluation is to test the
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appropriateness of the B-DAPP architectural components and present some of these initial
results. Interestingly, results obtained support findings in the literature. The future goal is to
conduct a more rigorous evaluation through predictive analytics, by exploiting the
preliminary analysis results presented in this paper.

5.1 Injury distribution by body parts
Since, health and safety data set include the operation type variable, which describes the
type of operation (lifting, pulling, cutting, etc.) with the specific tool (equipment) for the
given task. Understanding the distribution of injury by body parts can highlight the top-k
operations, for instance, that result in accidents to body parts. A graphical statistical tool
(Pie chart) to explore this information is as depicted in Figure 5, where it is observed that
certain body parts are prone to injuries during the power infrastructure project construction.
The injury distribution of the top 5 body parts as specified in the database is as follows:
fingers (23 per cent), hand (13 per cent), back/buttocks (12 per cent) and ankle (8 per cent).
The top 5 operations resulting in these injuries are pulling (stringing), lifting, loading/
offloading, manual handling and cutting because these parts are essential for carrying out
these operations (Chi and Han, 2013). The observation from this is probably that most of the

Figure 4.
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accidents are as a result of carelessness, distractions and disregard for safety procedures.
The exploratory analysis results are in agreement with Fan et al. (2014).

This fine-grained knowledge is not only integral to the development of robust
construction health and safety risk management but also critical for stakeholders to enforce
best safety practices to minimise accidents.

5.2 Incident distribution by season
Constructing power infrastructure (i.e. overhead lines) is mostly an outdoor activity, and
certain types of accidents are more likely due to the changing seasonal conditions (summer,
winter, autumn and spring). Figure 6 shows that winter has the highest percentage of
incidents (29 per cent), followed by autumn (25 per cent), spring (24 per cent) and summer
(23 per cent). Scotland has a temperate and oceanic climate that is very cold in winter, due to
frequent and heavy hail and snow showers. Wales likewise has a temperate climate and
tends to be wetter than England.

Trips, slips and falls are among the most common incidents in these regions due to the
reduced visibility. Temperatures near or below freezing and strong winds can also result in
severe illness and injury. Additionally, vehicle accidents occur due to the effects of ice and
snow on muddy roads.

The use of big data analytics for automatic extraction and dissemination of climatic
conditions of a region in real-time will go a long way at mitigating injuries that are
synonymous to that region (location).

5.3 Accident distribution by spatial analysis
Often, the top management of a construction company may be interested in regions with
high incident rates. Offering this service will equip managers with adequate information to
proactively react to health and safety challenges in such regions. Thus, spatial analysis is of
immense importance in such situations in that it enables the analysis of incidents over the
topological and geographical spread. In the health and safety data set, the location
information is captured in the “site” column. For the spatial analysis, the data set is
pre-processed to extract the UK postcode of each incident record and linked with the
corresponding latitude and longitude data from Doogal (www.doogal.co.uk/UKPostcodes.
php). The geographical heat map is employed to visualise the resulting data. Figure 7 shows
the summary of this distribution, where the size of spheres represents the proportion of
accidents (computed as percentages) in each region. Scotland has the highest (30 per cent),
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followed byWales and South West (25 per cent), North (16 per cent), South East (14 per cent)
and Midlands (2 per cent). The frequency of severe weather is observed to be the leading
cause of accidents in Scotland as well as Wales and South West regions. Strong wind, for
instance, may lead to shattering of vehicle windscreens and a collapse of a fence or unit.
Icy weather may result in trips and slips. Also, heavy-duty machinery operation (i.e.
excavation and road cutting) is often the cause of utility service damage (i.e. gas pipelines,
water supply). Even though geological conditions in different cities are complex, existing
health and safety risk management approaches do not consider making this information
available for proper health and safety risk prevention. To efficiently bring health and safety
risk in the site under control, incorporating a module to automatically compute the geology
and hydrology condition of construction sites in real-time will improve the optimal control of
occupational hazards.

Additionally, the result of viewing the regions with respect to incident (or accident) rate
can further be narrowed to cities and a specific location. The impact of location on incidents
is worth further exploration. This investigation is the focus of future research on the
proposed architecture.

5.4 Modelling the relationship between variables
Tremendous R&D efforts have been carried out to reduce the impacts of occupational health
hazards. One such attempt is in modelling and analysing several variables, i.e. determining
the relationships between the predictors (independent variables) and the dependent
variable. Robust and efficient machine-learning techniques such as deep learning, gradient
boosting machines and linear multivariate regression are employed in modelling
relationships among variables. In this paper, a demonstration of the linear regression
technique is made due to its simplicity.

Linear multivariate regression, in this regard, advocates methods for analysing health
hazards with respect to the project cost. This concept not only enables the exploratory
analysis of injury but also allows predictive accident analytics. The principle of the
linear multivariate regression is to predict Y as a linear combination of the input variables
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(x1, x2,…, xp) plus an error term ϵi:

yi ¼ b0þb1xi1þb2xi2þ � � � þbpxipþEi; iA 1; n½ �;

n is the number of sample data, p the number of variables and b0 a bias. This model can
conveniently be written as y¼Xβ+ ϵ, where:

y ¼ y1; . . .; ynð ÞT ; E ¼ E1; . . .; Enð ÞT ;b ¼ b1; . . .; bn
� �T

; and X ¼

1 x11 ^ x1p
1 x21 ^ x2p
1 ^ ^ ^

1 xn1 ^ xxp

0
BBBB@

1
CCCCA
:

The predicted or fitted value is thus, ŷ ¼ X b̂, where b̂ is the least squares estimate of b.
The model can be used, for example, to predict the body part injured given a set of inputs

such as the type of operation (task), equipment being used, kind of power infrastructure
project, the project complexity, project contract type, etc. A practical but straightforward
illustration is to determine the relationship between the project cost and occupational
hazards (linear regression with one predictor) is depicted using a line plot (Figure 8). The
x-axis of the plot represents the project cost while the y-axis represents the health hazards
risk (incidents and accidents). The line plot shows a significant increase in the number of
health hazards (accident and incidents) as the project cost increases. Consequently, the
number of occupational health risk is proportional to the project cost. This result is expected
since the project cost is a crucial factor in determining the complexity of a project. Thus, the
more complex a project is, the more are incidents associated with it.

30

25

20

15

10

5

0

54
6

76
6

82
8

91
6
1,

25
8
1,

37
4
1,

88
7
1,

93
6
2,

18
5
2,

49
8
2,

60
6
2,

69
7
2,

75
8
2,

95
6
3,

35
6
3,

57
7
3,

66
3
4,

02
0
4,

09
9
4,

40
9
4,

87
5

Project cost (£1,000)

Accident

Incident

y =0.4996x +4.9501

y =0.2199x +0.6051

H
ea

lth
 a

nd
 S

af
et

y 
R

is
k

Figure 8.
Relationship
among variables

16

WJSTSD
16,1



6. Conclusions
Construction safety risk analyses are currently limited because existing
techniques overlook the complex and dynamic nature of construction sites.
Besides, they ignore or simplify some key factors and pay little attention to analysing
the relationship between a safety phenomenon and safety data. Today, large and
dynamic data with various data types are to be analysed. In implementing the health
hazards management tool, the big data architecture that is based on a well coherent
health risk analytics lifecycle is proposed. The big data technology was selected due to its
support for massive, high dimensional, heterogeneous, complex, unstructured,
incomplete and noisy data.

The preliminary results obtained in this study using the various big data frameworks
have enabled us to design a robust architecture to handle and analyse power
infrastructure accident data. The proposed architecture can identify relevant variables
and improve preliminary prediction accuracies and explanatory capacities. It has also
enabled conclusions to be drawn regarding the causes of health hazards. The results
obtained in this study represent a significant improvement in terms of managing
information on construction accidents, particularly for power infrastructure companies.
The satisfactory results of the B-DAPP tool have indicated the reliability and
appropriateness of the selected big data components for studies of construction health
risks and their causes.

Future research is aimed at rigorously evaluating accuracies of both the prediction and
prescription of the software deployed in real-time. Additionally, other researchers should
look in the area of designing and planning a more ambitious, larger scale models to gain a
deeper understanding of accident causes in various industrial sectors.
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