# The current issue and full text archive of this journal is available on Emerald Insight at: www.emeraldinsight.com/2042-5945.htm

WJSTSD 12,4

246

# Paleoecological studies of an archeological site in Sudan (Musawarat ElSufra)

# Evidence of climatic change

Amel Hassan Abdallah and Dafaala Ali Ibrahim Department of Botany, Faculty of Science, Khartoum University, Khartoum, Sudan

#### Abstract

**Purpose** – The purpose of this paper is to measure the environmental changes, which took place in the study area Musawarat ElSufra and the authors try to find the causes of these changes and establish a comparison of the present and past vegetation of the area.

**Design/methodology/approach** – Present vegetation was investigated using fresh plant materials for pollen analysis. Fossils were taken from the *hafir* (basin) to study the fossil pollen grains at different soil depths. Soil surface samples were taken to analyze the chemical and physical properties of the soil.

**Findings** – The pollen analysis of the samples taken from the *hafir* (basin) of Musawarat reveals that there are 21 species belonging to 16 families. The dominant families were Cyperaceae, Commelinaceae, Mimosaceae and Amaranthaceae.

**Originality/value** – Comparison of past and present vegetation reveal the causes of environmental change and insure sustainable development in arid region.

Keywords Climate change, Paleoecology, Fossils pollen analysis

Paper type Research paper

#### Introduction and literature review

Current fears concerning global climatic change are particularly focussed on the semi-arid zone, where increased aridity could have serious consequences. The study of past vegetation changes associated with climatic changes is, therefore, of importance and the technique of pollen analysis is proving valuable as a tool in this type of research. The eastern Sahara has been the focus of various geological, paleontological, paleoecological and archeological research for more than 40 years (Nicoll, 2004). The primary paleoenvironmental changes in Egypt and northern Sudan have been inferred from various proxy records and cultural sites.

Covering lines of evidence from various geoarcheological and interdisciplinary investigations conducted in Egypt and northern Sudan suggest that significant environmental changes have influenced human activities throughout antiquity (Nicoll, 2004). In the northern Sudan it was aimed at discovering pluvial periods in the



World Journal of Science, Technology and Sustainable Development Vol. 12 No. 4, 2015 pp. 246-256 Emerald Group Publishing Limited 2042-5945 DOI 10.1108/WJSTSD-10-2015-0048

This paper has been published in a conference proceedings publication by WASD in 2015.

This work has been published previously in its current or a substantially similar form and I have obtained permission to republish the Work. The previously published Work is fully attributed and referenced. I have provided evidence of permission to republish from the copyright holder © World Association for Sustainable Development (WASD).

hyper-arid regions during the Holocene (Haynes *et al.*, 1989; Mehringer, 1982; Ritchie, A 1987; Ritchie and Haynes, 1987; Ritchie *et al.*, 1985).

#### Ecological and climatic conditions in Musawarat

The great civilizations in the past is the best evidence for the effect of environment on theses civilization which appear in the warmest and cool places such as Nile valley and between rivers, around the Mediterranean sea and India and China civilizations. In all of these places, water is considered as an important factor affecting people, settlement and civilization constructions. Climatic zones in Great Meroitic civilization is like Sudan today climatic zones, the northern part is ecologically different from that at the south. Most evidence is clear from the studies and conclusion of Meroe's kings at that period and from the (Graffiti) of animals in the temple walls in addition to fossils of fauna and flora distributed around ancient Meroe which reflect the climate beside the foreign travelers who visited the area in the eighteenth and nineteenth century to compare past and present climatic changes in the past 2,000 years and till today.

#### Ecological and climatic conditions before Meroe

Emery (1964) reported that all witnesses indicate that people who live between the first waterfall and the second are livestock owners. This ensured that the campaign of Sinefro king around 2580-2613 BP gained 2,000 head of livestock. Trigger (1970) demonstrated that Kings used to bring ivory, abanos wood and cows monkeys tigers and tiger skins from their trips in the south and also their labour used to bring to them some gift from the south to north Sudan and Egypt. In addition to that Bit Alwally Temple refer to (1224-1289) the same pictures which referred that climatic conditions totally differed from today and it is natural habitat not far from Egypt and it has been hunted from the same area and send a life.

Mawson and Williams (1984) found some Mollusks at *Hafir* basin in eastern Sudan and carbon 14 (C14) for the snails indicated that it dated back to (1900-1700) before present.

#### Climatic condition during Merwatic period

Northern parts of Meroe are drier than the south. Taharga (664-690 BP) mentioned that Kawa temple was destroyed and sand closed its gate. There was a climatic change and drought at that time and there was fluctuated heavy rain and flood (Macadam, 1949). The southern parts of Meroe are more humid, that is why the capital transferred from Nabta to Meroe. This is clearer from the seed fossils of *Celtis integrfolia* which normally grow in an area covered with annual rainfall of 400 mm (Williams and Clarks, 1972). The presence of large Hafeir basin indicates that there was heavy rain in the past and the vegetation cover was more dense dominated by a lot of trees and long herbs, something which made the iron industry the main job of Meroe people (Shinnie, 1976). This area is similar to the Savanna region today.

#### Climatic condition during eighteenth and nineteenth century

The travelers saw a lot of trees and long herbs near Shendi and they heard lion voices and were advised to take care from lions in the area. Archeological site in Sudan

247

#### WISTSD Climatic conditions at present

There is a climatic shift from Savanna to semi desert condition and the climate in the past was humid enough to allow the presence of these great civilizations and not like today's fluctuation in rainfall.

These studies were concentrated in Selima Oasis, Etrun Oasis and Oyo depression, between latitudes 18° and 22°. The studies suggest that savanna and grassland, occupied regions that today are hyper-arid regions, in a major pluvial episode between 9500 and 4500 BP. Wickens (1975) in his prehistoric study on the climatic and vegetational changes in Sudan 20000 years BP, showed that the orientation of the sand dunes indicates that, at the dry period 20000-15000 years BP the isohyets were 450 km to the south of their present position; at the wet period 6000-3000 years BP they were 250 km to the north. Also from the biological evidences he showed that there were northward shift of 400 km in the very wet period 12000-7000 years BP.

Ritchie *et al.* (1985) studied oyo sites and found that the pollen fossils belonging to vegetational zones from the mid Holocne and provide the first conclusive demonstration of vegetation and climate change in the early- to mid-Holocene of the eastern Sahara.

They agree with tentative conclusion of Maley (1977, 1981) for the distant Lake Chad record, with the general Holocene lake-level trends for north-east Africa and with changes in the position of the African monsoon predicted on the basis of Milankovitch orbital forcing factors.

Most of these studies include the analysis of pollen stratified in alluvial and other sediments, pollen associated with archeological sites, and also studies of the relationship between current vegetation and pollen rain, which provide a key for the interpretation of fossil pollen assemblages. Our main objective here is to compare the past and present vegetation of the study area Musawarat ElSufra and to investigate the causes of climatic change being climatic or otherwise. To establish if the causes are due to natural (climatic) or anthropogenic (man-made). This work was concentrated on an archeological site in semi-arid zone in northern Sudan.

#### Methodology

#### Fresh materials treatment

Flowers of the plant species of the area were used to prepare pollen grain slides. These are considered as reference slides to be used in identifying the fossil pollen grains. The methods used for preparing these slides are those described by Faegri *et al.* (1989). The flower taken from the field was chemically treated with KOH and the acetoloysis mixture.

#### Fossil pollen analysis

The *hafir* of Musawarat Elsufra is considered as an open section and samples were collected at points along the walls of this section from two different directions in the *hafir* (north and south) at depths of 50, 100, 150, 200, 250 cm and 550 cm from the top, so as to reconstruct past vegetation. The area covered in this study is located east to the Sufra Wadi and 65 km from ancient Merwe Town, latitude 16° 22' North, and longitude 33° 22' East. Muswarat ElSufra (Great Enclosure) is located some 15 km east of Nagaa and 30 km from the Nile. It is one of the sites of the great Meroitic civilization which refereed to the fourth century before present.

12.4

#### Results

Fossils pollen analyzed from the basin's (*hafir's*) soil showed different types of pollen flora which include 22 species belonging to 14 families. The most dominant families were Commelinaceae, Cyperaceae and Mimosaceae. Pollen grain identification was carried out according to El Ghazali (1989) and Bonnefille and Riollet (1980). The identification of species which pollen grain is belonging to was carried out using the available relevant African floras with a special attention to scientific publication of Sudan and the neighboring countries and the distribution was carried out according to Andrews (1950/1952/1956) and that was shown in Table I (Plates 1-4).

#### Discussion and conclusion

Past vegetation was examined by analyzing fossils pollen grain found in the samples taken from *Hafair* of Musawarat ElSufra.

In total, 22 types of plant species were recorded in the slide examined. These were described and fully identified, it was noticed that the number of plant species is low in the past vegetation. This is in line with Ritchie *et al.* (1985) who reported that a major problem in the study of Holocene paleoenvironments of the arid and wind-deflated Sahara is the low preservation potential of sediments from which a record of past climatic change can be established.

From the plant records it is clear that the presence of such plant pollen as *Commelina bengalensis* and *Cyperus* sp. Indicate that there is a lot of water in the area. Andrews (1950/1952/1956) described the natural habitat of these families in central and southern Sudan, an indication of the wet climate required by these species.

The presence of *Phragmites australis* in the flora from the *Hafair* of Musawarat ElSufra indicates that the rainfall of the area was more than enough to allow for its growths the plants grows best in marches and swamps along streams, lakes, ponds ditches where water level fluctuates from 15 cm below soil surface to 15 cm above.

At the family level, the Mimosaceae is a large and well represented family throughout Africa but when identified to species level (e.g. *Parkia bicolar* and *Mimosa pigra*). As for *Parkia bicolar* Andrews (1950/1952/1956) identified this plant as a forest tree adapted to the environmental variables. *Mimosa pigra* is distributed in the swamps and on riverbanks. This also indicates that the area was one humid area. As Andrewes and Bamford (2007) whose studied the Loetoli, Tanzania reported that higher rainfall increase the diversity, height and density of plants species while reduced rainfall would lead to decreasing species richness and greater domination by *Acacia* species. This seems to contradict with the above mentioned low number of plant species. The reason probably is due to the fact that most plants are zoophilous plants that leave no pollen in the deposits (Faegri *et al.*, 1989).

It was concluded that the occurrence of different type of diatoms support our suggestion that habitat in the past is not like the present.

The past vegetation of the area contained some species which are not found today and that their natural environment was like that of central and southern Sudan rather than the study area in the north. Moreover the dominance of Cyperaceae and Commelinaceae in the past shows that the climate was wet enough in this area to allow for the presence of these plants. This was made clearer by the presence of diatoms.

This study showed that there was a climatic shift from a savanna to a semi-desert condition in this area.

Archeological site in Sudan

249

| WJSTSD |  |
|--------|--|
| 12,4   |  |

## 

| WJSTSD                                                                                  |     |                                                        |                | Life                |                                                                        |     |             | Present                                              |
|-----------------------------------------------------------------------------------------|-----|--------------------------------------------------------|----------------|---------------------|------------------------------------------------------------------------|-----|-------------|------------------------------------------------------|
| 12,4                                                                                    | No. | Past vegetation species                                | Family         | form                | Distribution in Sudan                                                  | No. | Depth       | vegetation                                           |
|                                                                                         | 1   | <i>Justicia odora</i> (Forsk.)<br>Lam.                 | Acanthaceae    | Under<br>shrub      | Red Sea Hills                                                          | 1   | 100         | Acacia tortilis<br>subsp. tortilis<br>(Hochest)      |
| 250                                                                                     | 2   | <i>Blepharis linariifolia</i><br>Pers                  | Acanthaceae    | Under<br>shrub      | Central Sudan                                                          | 2   | 100         | <i>Cadaba farinosa.</i><br>Forsk                     |
|                                                                                         | 3   | Sansevieria ehrebergiis<br>Schweinf, ex Bak            | Agavaceae      | Under<br>shrub      | Red Sea district, Wadi Ossair<br>South of Suakin                       | 6   | na          | Panicum<br>turgidum. Forsk                           |
|                                                                                         | 4   | Celosia polystachia<br>(Forsk.)                        | Amaranthaceae  | Herb                | Widespread                                                             | 4   | 100,<br>250 | Cynodon dactylon.<br>L. (pers.)                      |
|                                                                                         | 5   | Achyranthus aspera L                                   | Amaranthaceae  | Herb                | Widespread                                                             | 1   | 100         | <i>Fagonia cretica.</i><br>Sensu<br>ASchweiber       |
|                                                                                         | 6   | Commelina benghalensis<br>L                            | Commelinaceae  | Herb                | Red Sea District, Central and Southern Sudan                           | 1   | na          | <i>Tribulus teresteris.</i><br>L.                    |
|                                                                                         | 7   | Commelina africana L                                   | Commelinaceae  | Herb                | Red Sea Hills, Erkawit. Southern<br>Sudan                              | 11  | na          | <i>Capparis deciduas.</i><br>Forsk.                  |
|                                                                                         | 8   | Cyperus articulatus L.                                 | Cyperaceae     | Herb                | Blue Nile Province. Southern<br>Sudan                                  | 6   | 100         | Boerhavia repens.<br>L.                              |
|                                                                                         | 9   | Cyperus rupicundus L                                   | Cyperaceae     | Herb                | Widespread, River bank                                                 | 1   | na          | Citrullus<br>colocynthis. Schrad                     |
|                                                                                         | 10  | Cyperus laevigatus L                                   | Cyperaceae     | Herb                | Red Sea District, Darfur, Jubel<br>Marra. Equatoria                    |     | na          | Euphporbia<br>aegyptiaca. Boiss                      |
|                                                                                         | 11  | <i>Delonix elata</i> (L.)<br>Gamble.                   | Caesalpinaceae | Tree                | Red Sea Hills                                                          | 1   | na          | Zaleya pentandra.<br>(L.) Jeffer                     |
|                                                                                         |     | Asparagus abyssincaus<br>Hochst ex A Rich              | Liliaceae      | Shrub               | Central and Southern Sudan                                             |     | na          | Indogifera<br>hochstettri. Bak                       |
|                                                                                         | 13  | Acacia senegal (L.)                                    | Mimosaceae     | Tree                | Central Sudan                                                          | 1   | 100         | Setaria vertisilata.<br>L. (Beav.)                   |
|                                                                                         | 14  | Mimosa pigra L                                         | Mimosaceae     | Shrub               | Swamps and river banks                                                 | 19  | na          | Corchorus tridens.<br>L.                             |
|                                                                                         | 15  | Pakia bicolar A.Chev                                   | Mimosaceae     | Tree                | Equatoria                                                              | 1   | 100         | Corchorus<br>depressus. (L.)<br>Christens            |
|                                                                                         | 16  | <i>Commicarpus africanus</i><br>(Lour) Dandy, comb.nov | Nyctaginaceae  | Herb                | Northern and Central Sudan                                             | 8   | 200         | Aristida<br>adscensionis L.                          |
|                                                                                         | 17  | <i>Vossia cuspidata</i> (Roxb.)<br>W. Griff            | Poaceae        | Herb                | Central and Southern Sudan                                             | 8   | 100         | <i>Oldenlandia</i><br><i>herbacea.</i> (L.)<br>Roxb. |
|                                                                                         | 18  | <i>Phragmites australis</i><br>(Cav.) Trin. Steud.     | Poaceae        | Grass               | Fung.prov. North white Nile<br>prov. BahrelGazal prov. Bahr<br>eljubel | 2   | 200         | <i>Maerua</i><br>crassifolia. Forsk                  |
|                                                                                         | 19  | Phoenix dactylifera L.                                 | Palmae         | Tree                | Northern Sudan, cultivated                                             | 4   | 100         | Sorghum<br>purpureoseiceum.<br>(Hochst)              |
|                                                                                         | 20  | Protea gaguedi J.F Gmel                                | Protaceae      | Shrub<br>or tree    | Central and Southern Sudan                                             | 1   | 100         | Balanites<br>aegyptiaca. (Del.)                      |
| Table I.Fossil pollen grainsfound in the Hafir ofMusawarat ElSufraand presentvegetation | 21  | Grewia bicolar Juss.                                   | Tiliaceae      | Shrub<br>or<br>Tree | Central Sudan                                                          | 6   | 100         | Pallenis cyrenaica                                   |
|                                                                                         | 22  | Cassia sp.                                             | Fabaceae       | Herb                | Widespread                                                             | 1   | 100         | Zephyranthus sp.<br>Boerhavia erecta.<br>L.          |

Archeological site in Sudan

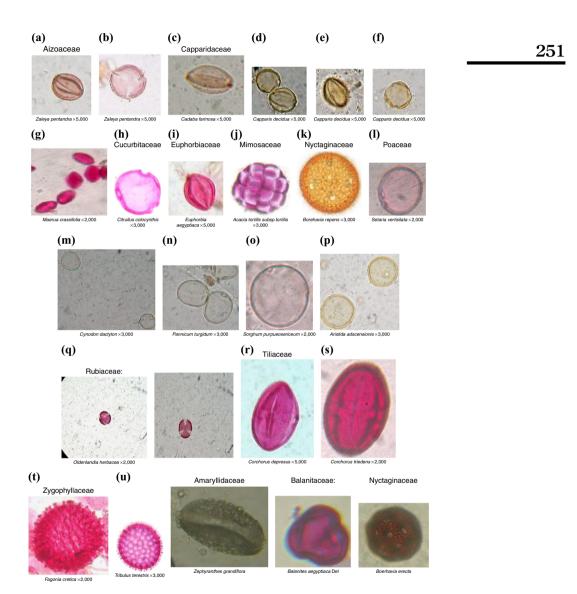



Plate 1. Present vegetation pollen analysis

### WJSTSD 12,4

### 252

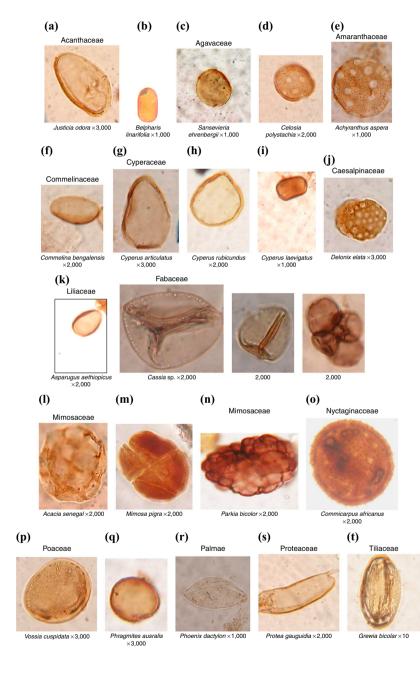



Plate 2. Fossil pollen grains

# Archeological site in Sudan

253



Frustulia rhomboids (Her.) De Toni Rhopalodia gibba (Ehr.)



Cymbella laneolata (Her.) Brun.



O.Muller (Valve view).



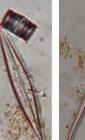
Rhopalodia gibba



Diplonis elliptica kutz (Cleve)



Navicula Pleurosigma rhyncocephala Kutz. delicatulum W.Smith






Melosira sp.



Melosira sp.



Brebissonia boeckii (Her.) Grun

Amphipleura pellucida Kutz.



Pediastrum sp. Green algae



## Plate 3. Different types of diatoms

# WJSTSD 12,4

### 254

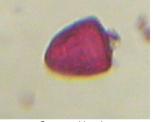




Mimosa pigra



Blepharis linariifolia Pers


Cyperaceae

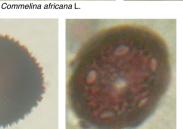



Cyperus articulatus



Cyperus sp. Commelinaceae:




Cyperus rubicundus



Cassia sp.







Celosia

Plate 4. Confirmation to some fossil pollen grains

|                                                                                                                                                                                                         | 1 II CHEOROSICUI |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Andrewes, P. and Bamford, M. (2007), "Past and present vegetation ecology of Laetoli, Tanzania", <i>Journal of Human Evolution</i> , pp. 1-21.                                                          | site in Sudan    |
| <ul><li>Andrews, F.W. (1950/1952/1956), <i>The Flowering Plants of the (Anglo-Egyptian) Sudan</i>, Vols 1-3, T. Buncle and Co. Ltd, Arbroath.</li></ul>                                                 |                  |
| Bonnefille, R. and Riollet, G. (1980), "Pollen des Savane'afrique, Center National dela Recherche Scientifique", SBN2-222.024978-Edition du CNRS, Paris.                                                | 255              |
| El Ghazali, G.E.B. (1989), "Study on the pollen flora of Sudan with special references to pollen identification", unpublished PhD thesis, Botanical Institute, University of Bergen, Bergen.            |                  |
| Emery, W.B. (1964), Egypt in Nubia, Hutchinson, London, pp. 136-139.                                                                                                                                    |                  |
| Faegri, K., Kaland, P.E. and Krzywinski, K. (1989), <i>Textbook of Pollen Analysis</i> , in Willy, J. and Sons (Eds), Alden Press, London, p. 328.                                                      |                  |
| Haynes, C.V., Eyles, C.H., Pavlish, L.A., Rrichie, J.C. and Ryback, H. (1989), "Holocene palaeoecology of eastern Sahara, Selima Oasis", <i>Quarternary Science Review</i> , Vol. 8, pp. 109-136.       |                  |
| Macadam, M.F.L.I. (1949), <i>The Temple of Kawa</i> , Vol. 1, Inscr. IV, Oxford University Press, London, p. 14.                                                                                        |                  |
| Maley, J. (1977), "Palaeoclimates of central Sahara during the early Holocene", <i>Nature</i> , Vol. 269, pp. 573-578.                                                                                  |                  |
| Maley, J. (1981), "Etudes palynoloiques dans le bassin du Tchad et paleoclimatologie de l Afrique<br>nord-tropicale de 30,000 ans a l époque actuelle", Travaux et Documents de L ORSTOM<br>129, Paris. |                  |
| Mawson, R. and William, M.A.J. (1984), "A wetter climate in Eastern Sudan 2,000 years age", <i>Nature</i> , Vol. 308, p. 51.                                                                            |                  |
| Mehringer, P.J. (1982), "Early Holocene climate and vegetation in the eastern Sahara; the evidence from Selima Oasis Sudan", <i>Geol. Soc. America</i> , Vol. 14, p. 564.                               |                  |
| Nicoll, K. (2004), "Recent environmental change and prehistoric human activity in Egypt and<br>northern Sudan", <i>Quaternary Science Reviews</i> , Vol. 23, pp. 561-580.                               |                  |
| Ritchie, J.C. and Haynes, C.V. (1987), "Holocene zonation vegetation in eastern Sahara", <i>Nature</i> , Vol. 330, pp. 645-647.                                                                         |                  |
| Ritchie, J.C. (1987), "A Holocene pollen record from Bir Atrun Northwest Sudan", <i>Pollen and Spores</i> , Vol. 29, pp. 391-410.                                                                       |                  |
| Ritchie, J.C., Eyles, C.H. and Haynes, C.V. (1985), "Sediment and pollen evidence for an early to mid-Holocene humid period in the eastern Sahara", <i>Nature</i> , Vol. 5, pp. 314-352.                |                  |
| Shinnie, P.L. (1976), Meroe, Acivilization of the Sudan, Thumes and Hudson, London, pp. 33-34.                                                                                                          |                  |
| Trigger, B. (1970), "Nubian Nergo Black Nilotic", African Antiquity, Vol. 1, p. 31.                                                                                                                     |                  |
| Wickens, G.E. (1975), "Changes in the climate and vegetation of the Sudan since 20,000", <i>B.P. Boissiera</i> , Vol. 24, pp. 43 -95.                                                                   |                  |
| Williams, M.A.S. and Clarks, J.D. (1972), "Prehistory and quaternary environment in Central<br>Sudan", Paleoecology of Africa 9, pp. 52-53.                                                             |                  |

Archeological

#### About the authors

References

Dr Amel Hassan Abdallah is a Lecturer in the Department of Botany, Faculty of Sciences, University of Khartoum, Sudan. She has published a number of papers. She is a Member of the Sudanese Natural Heritage Society and a Member of the Young Women Conservation Biologist (YWCB) in Africa and she won the Minister of Higher Education Prize for academic excellence awarded by the Sudan Natural Science Institute in 2001 and the El Zubair Prize for scientific

| WJSTSD<br>12,4 | innovation and excellence awarded by the Association of the Promotion of Scientific Innovation<br>in 2007. Her main interests are plant ecology and environmental microbiology. Dr Amel Hassan<br>Abdallah is the corresponding author and can be contacted at amel 762002(without com    |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Abdallah is the corresponding author and can be contacted at: amel762003@yahoo.com<br>Dr Dafaala Ali Ibrahim is an Associate Professor, Department of Botany, Faculty of Sciences, the<br>University of Khartoum, Sudan. He got the Candidatus Scientarium from the University of Bergen, |
| 256            | Norway. He was a General Director of the Taaseel Directorate, Ministry of Higher Education and Scientific Research 2001-2009. About his publications: he is a Co-author of the Integrated Dictionary of Biological Terms. His main interests are plant ecology and conservation biology.  |