

The current issue and full text archive of this journal is available at http://www.worldsustainable.org

IJFNPH 6,2

159

REDUCTION OF THE NEGATIVE EFFECT OF OCHRATOXIN A ON THE ORGANS OF RATS FED OCHRATOXIN A-CONTAMINATED CHOCOLATE BY THE SPICE AFRAMOMUM DANIELLI

Shamsideen Olusegun Aroyeun*¹

Cocoa Research Institute of Nigeria Gabriel Olanrewaju Adegoke²

University of Ibadan, Nigeria

Janos Varga³

University of Szeged, Hungary

Abstract

Purpose: This work was carried out to study the potential of *Aframomum danielli* spice powder in reducing the negative effect of ochratoxin A in rats fed OTA contaminated chocolate.

Design/methodology/approach: The design comprised 4 x 4 factorial experiments using 20 female albino rats fed with ochratoxin A-contaminated chocolate with average body weights of 180g. The experimental diet consisted of ochratoxin A-spiked chocolate with 20µg/kg of OTA with varying levels of A. *danielli* incorporated at concentrations of 1000ppm, 1500ppm, 2000ppm and 2500ppm respectively. Ochratoxin A-contaminated chocolate without A. *danielli* served as the control. The chocolate was melted and ad-

¹ Dr. Shamsideen Olusegun Aroyeun *corresponding author, Cocoa Research Institute of Nigeria, PMB, 5244, Ibadan, Oyo State, NIGERIA, Email: aroyeun2000@yahoo.co.uk

² Prof. Gabriel Olanrewaju Adegoke, Department of Food Technology, University of Ibadan, NIGERIA

WASD

International Journal of Food, Nutrition and Public Health (IJFNPH) Vol. 6 No. 2, 2013

Copyright © 2013 WASD 3 Dr. Janos Varga, Department of Microbiology, University of Szeged, HUNGARY

ministered in amounts of 2.0 mg/kg BW in 2.0ml of solution of 15% v/v ethanol isotonic saline subcutaneously administered at the base of the ear. The animals were kept inside in groups and they were fed with groats mix. Water was available *ad libitum*. After 10, 15, 20 and 30 days, blood was sampled from the vena cava cranial before feeding in the morning. The actual weights were taken at the start of the experiment and the final weights were taken after slaughter. Formation of free radical oxygen in phagocytes was detected via luminometer. At the expiration of the experiment, all animals were sacrificed after administration of overdose of anaesthetics followed by bleeding. Lung changes were examined. The number of eosinophils was determined in bone marrow smears sampled at autopsy. Ochratoxin A levels in the liver, lungs and spleen were also detected.

Findings: The results indicated changes in body mass development with different levels of ochratoxin A administered. The use of *A. danielli* did not support weight gain. Ochratoxin A levels in the liver, spleen, kidney and lungs were below serum levels by a factor of between 5 and 20, which also depended on the ochratoxin A dose and the *A. danielli* treatments. There was a significant reduction in OTA in all organs of the experimental animals with increase in the administration of *A. danielli*. A significantly high OTA concentration, however, occurred in the kidney.

Practical implications: Since OTA toxicity has been associated with enhanced lipid peroxidation, which could lead to cell damage, the use of *A. danielli* has reduced all the cytotoxic effects on rats fed with chocolate treated with *A. danielli* compared with controls.

Originality/value: The use of A. danielli counteracted the negative effects of ochratoxin A as evidenced in this study.

Keywords: Reduction, Negative effects, A. danielli, Ochratoxin A, Chocolate

INTRODUCTION

Under the influence of OTA, the formation of reactive oxygen radicals (ROR) is highly promoted. The radical oxygen formation has been reported to be responsible for cell damage, stress development and other cardiovascular diseases and eventually death. Other problems associated with OTA incidence include nephrotoxicity affecting the kidney. The reduction of OTA in the system is imperative in view of the danger posed to human and animal lives. Experimental and epidemiological evidence supports the involvement of oxidative stress in the pathogenesis and progression of several chronic diseases

(Hallwell *et al.*, 1992). Lipid peroxidation is an autocatalytic free radical-mediated destructive process whereby polyunsaturated fatty acids in cell membranes undergo degradation in the form of lipid hydroperoxides (Sovanian, 1985; Slater, 1984).

Schaaf *et al.* (2002) attributed proximal tubular cell damage caused by OTA to the formation of reactive oxygen species (ROS), which in turn induce oxidative damage in lipids, protein and DNA. Several natural components of diets including ∞ -tocopherols and various polyphenols have been reported to exhibit potent antioxidant activities and thus might partly counteract OTA toxicity (Renzulli *et al.*, 2000). In a study on the effects of two diterpenes (kafestol and kahwen) in protecting green and roasted coffee beans against the covalent binding of aflatoxin B1 metabolites to the DNA of rats, Carvin *et al.* (1998) identified diterpenes as potentially chemopreventive agents.

Adegoke *et al.* (2000) also carried out a study on inhibition of food spoilage yeasts and aflatoxigenic moulds by monoterpenes of the spice *Aframomum danielli*. The superiority of *A. danielli*, a natural antioxidant over two synthetic antioxidants, BHA and BHT, has been reported (Adegoke *et al.*, 2000). This study was carried out with the aim of establishing the counteracting effect of the negative impact of OTA on the organs of female rats fed OTA-contaminated chocolate. The addition of *A. danielli* to the chocolate was also examined for the reduction of formation of oxidation products in the rats *in vivo* as well as the haematological parameters.

MATERIALS AND METHODS

This experiment was designed using a 4×4 factorial experiment comprising 20 female albino rats fed with contaminated chocolate with average body weight of 180g.

Experimental diets consisted of chocolate spiked with 20µg/kg of ochratoxin A with varying levels of A. *danielli* at concentrations of 1000ppm, 1500ppm, 2000ppm and 2500ppm. Ochratoxin A-contaminated chocolate without A. *danielli* served as the control. The chocolate was melted and administered in amounts of 2.0ml/kg BW in 2.0ml of a solution of 15% v/v ethanol isotonic saline subcutaneously administered at the base of the ear. The animals

IIFNPH

6,2

were kept inside in groups and they were fed a groats mix. Water was available *ad libitum*. After 10, 15, 20 and 30 days, blood was sampled from the vena cava cranials before feeding in the morning. The initial weights were taken at the start of the experiment and the final weights were taken before slaughter.

The blood serum collected from the experimental animals was stored at -20°C until use. Ochratoxin A in the blood serum was later determined by means of Enzyme Linked Immunosorbent Assay (ELISA) using Veratox kits produced by Neogen US. The manufacturer's guidelines were used for the analysis. Total leucocyte counts and differential blood counts were determined in accordance with Muller et al. (1999). Formation of free radicals in phagocytes was detected in whole blood by applying chemiluminescence amplified by luminol after stimulation with zymosan or lipopolysaccharides in a luminometer using the method of Muller et al. (1999). At the expiration of the experiment, all the animals were sacrificed after administration of an overdose of anaesthetic followed by bleeding. Lung changes were examined. The number of oesinophils was determined in bone marrow smears sampled at autopsy after administration of Pappen heime stain. Ochratoxin A levels in the liver, lungs, kidney and spleen were also detected in accordance with Muller et al. (1999).

REDUCTION OF FREE RADICAL OXYGEN FORMATION USING CHEMILUMINESCENCE ASSAY

The capacity of A. *danielli* to reduce free radical oxygen formation in rats fed ochratoxin A-contaminated chocolate was assayed by chemiluminescence (Whitehead *et al.*, 1992). Enhanced chemiluminescence signal reagent (Sigma Chemical, US) comprising assay buffer tablets A and B containing luminol p-iodophenol enhancer and perborate oxidant was prepared by adding tablets A and B to the buffer solution. Sign reagent (0.4ml) was added to distilled water (1ml) in a glass cuvette containing a magnetic stirrer. The cuvette was placed in a Parun Wallac Victor 2-chemiluminometer (Sigma Chemical Co.) and the reaction commenced by the addition of 25ml of horseradish peroxidase (4ug/ ml in H₂O₂). Lyophilized rat blood (0.5mg/ml) dissolved in PBS (pH 7.4) was added to the cuvette and the time for which light output was suppressed was determined. The determinations were

IJFNPH repeated three times for each sample solution. Comparison was made with a standard cuvette containing different concentrations of Trolox in water.

RESULTS AND DISCUSSION

163

As shown in Table 1, changes in body mass development were associated with different levels of ochratoxin A administered to the female rats. Treatments of ochratoxin A-contaminated chocolate before feeding to the rats created a reducing effect on the induced negative physiological effects. A reduction in rat weight was observed with increase in A. danielli administration on the experimental animals, although there was no significant difference in OTA given to the different A. danielli treated groups. Muller et al. (1999) reported that body mass development was influenced by ochratoxin A administration, which differs from the results of this study. The use of A. danielli may not support weight gain or obesity, as in previous reports (Christoph et al., 2005). Ochratoxin A levels in the liver, spleen, kidney and lung were below serum levels by a factor of between 5 and 20, which also depended on OTA dose and the A. danielli treatment. There was a significant reduction in OTA in all the organs of the experimental animals with increased administration of A. danielli. A significantly high OTA concentration, however, occurred in the kidneys (Table 1). This report is in agreement with other findings where OTA has been linked with nephrotoxicity (Renzulli et al., 2004) with A. danielli, indicating that the major target organ of ochratoxin A is the kidney.

The health effects of *A. danielli*-treated chocolate in ochratoxin A-infected rats is in agreement with the work of Christoph *et al.* (2005), which emphasized that a high consumption of food rich in antioxidants can reduce the risks of cardiovascular and kidney diseases. Since OTA toxicity has been associated with enhanced lipid peroxidation (Schaaf *et al.*, 2002), which could also lead to cell damage, the use of *A. danielli* antioxidant has reduced all these cytotoxic effects on rats fed with chocolate treated with *A. danielli* compared with experimental animals without the antioxidants.

Cowan (1977) reported that naturally-occurring antioxidants have been associated with prevention of oxidative damage induced by the free radicals that cause several human diseases. Phenolic substances in *A. danielli* (a trihydroxy group) have also been proposed as important contributors to

				OTA in c	OTA in organµ/kg		
(mdd)	n)	(g)	(g)	(
A. danielli treatment	Initial	Initial weight	Final weight	Liver	Lung	Spleen	Kidney
	OTA/BW						
Control	20,110 ±.11a	122±1.00ab	75.22±0.02b	44.50±0.50a	110±1.00a	29.00±1.00a 138±0.0a	138±0.0a
1000	20.05±0.01a	120 ±0.00b	74.40±0.00c	36.50 ±0. 50b	83.00±1.00b	28.00±0.00b 101±1.00c	101±1.00c
1500	20.13±00.01a	119±1.00c	73.16±0.00d	31.00±1.00c	41.00 ±1.00c	26.00±0.0b	62.00±0.00c
2000	20.60±0.50a	115± 0.00d	71.31±0.01dc	28.00±1.00c	32.00±1.00c	21.00±1.00c 41.00±1.00d	41.00±1.00d
2500	20.73±0.03a	123±0.00a	70.33±0.07a	6.00±1.00d	11.00±1.00d	20.00±0.00c 35.00±1.00e	35.00±1.00e
a. b. c. d. and e. means having the same letters along the same vertical columns is not significantly different (p<0.05)	ing the same letters	along the same ver	tical columns is not s	ignificantly differen	nt (p<0.05)		

Reduction of the negative effect of ochratoxin A on the organs of rats fed ochratoxin A-contaminated chocolate 164

Table 1.Ochratoxin Aconcentrationsin organs of ratsfed ochratoxinA-contaminatedchocolate

IJFNPH the total antioxidant capacity (TAC) of *A. danielli* (Adegoke *et al.*, 1998).
Further attention has recently been paid to the possible health benefits of dietary phenolic phytochemicals that inhibit antioxidative, antifungal and anti-browning properties (Christoph *et al.*, 2005).

The levels of OTA (ng/g) found in the serum of experimental animals (Table 2) increased from day 0 and reached the highest levels on day 30. With the administration of A. danielli, a significant decrease in OTA in the serum was observed in the presence of A. danielli and the efficiency of the spice increased from 1000ppm to 2500ppm A. danielli (4.4.7). The use of A. danielli to suppress (ROR) confirms in vitro studies on the use of crude extracts of A. danielli as antioxidants in oils (Adegoke et al., 1998, 2000; Fasoyiro et al., 2000). The reduction in free radical oxygen formation and reduction of OTA by antioxidant A. danielli has been reported (Adegoke et al., 2000) Reddy et al. (1984) reported that antioxidants can have significant effects on reduction of free radical formations which can induce breast and colon cancers. Antioxidant mechanisms have been hypothesized as being responsible for the inhibition of mammary carcinogenesis by dietary kelp in the presence of enhanced antioxidant activity, and reducing lipid peroxide in the liver of treated rats (Maruyama et al., 1991).

In the serum from day $0-30^{\text{th}}$ day, a significant reduction was observed in all A. *danielli* treatments only after the first day. On the 10^{th} day, there was no significant difference in serum OTA when 1500ppm and 2000ppm A. *danielli* powder were used. On day 15, a highly significant reduction in OTA (p<0.05) occurred in all treatments. Ochratoxin A reduction was highest in animals fed OTA-contaminated chocolate and treated

	Aframomum danielli treatment							
	Experimen- tal days	Control	1000	1500	2000	2500		
	8	$0.35a0 \pm .21$	0.45±0.01a	0.400 ±0.01a	0.38±0.01a	0.33±0.00a		
Table 2. Levels	10	305.±.7.07a	245± 0.41b	202±1.41c	200±0.01c	11±1.41d		
of ochratoxin A	15	421±0.71a	200±0.00b	162±2.12c	149±1.41d	121±0.71e		
(µg/kg) in the sera	20	604 ±1.41a	595±7.07a	501±1.41b	417±2.12c	204±2.12d		
of experimental	30	1106 ±8.49	851±1.41b	701±1.41c	311±1.41d	111±.1.41e		
animals fed with	a. b. c.	along the same	e horizontal li	ne with the sar	ne subscripts	are not		
Aframomum danielli	0	antly different	*					
treated chocolate	± stan	dard deviation						

165

with 2500ppm of A. *danielli*. Some trends were observed after 20 and 30 days respectively. In Table 2, serum OTA of the controls corresponded to levels measured before the administration of the toxin. The level of OTA found in the serum depended on A. *danielli* administered.

The OTA levels in the serum resulting from this study were in agreement with past reports from feeding experiments. Examination of the blood cells (Table 3) showed changes in the haematogen parameters from day 5-20 of the experiment. Compared with animals fed with A. danielli-treated chocolate, the control animals exhibited lower total leukocytes, higher lymphocytes and lower neutrophil counts. This might be due to the negative effects of ochratoxin A on haematological parameters (Christoph et al., 2005). The arithmetic mean of the eosinophils counts in the experimental rats was higher, with significant differences becoming apparent with A. danielli administration from 1000ppm to 2500ppm (Table 3). Some changes in haematological parameters were observed as a result of ochratoxin A contamination, which indicated immunomodulatory effects, and these changes may depend on the dose and the toxin concentrations (Muller et al., 1999). Administration of A. danielli at varying concentrations significantly affected the haematological parameters as a dose of 20µg/kg of OTA resulted in a decrease in oesinophilic cells and an increase in lymphocytic cells together with a reduction in total leucocytes. These findings are in agreement with the results obtained by Muller et al. (1999) in their experiment with mice and swine.

Ochratoxin A did not have much effect on the haematological parameters of animals given A. *danielli*-treated chocolate rations only. In an OTA feeding experiment involving doses of 0.3-12.0mg/kg feed, Olojede *et al.* (1993) also found oesinophils in association with human Balkhan endemic nephropathy, which is thought to be linked to OTA exposure. Increased oesinophils in the experimental animals used in this work might be due to an influence of OTA triggered at immunological levels (Li *et al.*, 1998; Lin *et al.*, 1998). As shown in Table 4, there was a strong correlation between OTA administered and the levels found in the liver, lungs, spleen and kidney, and in all these organs the correlation was highly significant with OTA (*p*<0.01). Correlation was significant (*p*<0.05) for the effects of OTA on the initial and final weights of rats fed OTA-contaminated chocolate, and at this probability level, there was also a strong relationship between the liver, the spleen and the kidney (r<

IJFNPH	-1)			0				_
5,2	10 ³ uľ		20	1.3b	1.1c	1.1c	1.0d	9.3a
167	Eosinophils (10 ³ ul ⁻¹)	days	15	1.1a	1.0b	1.0b	9.0c	9.0c
	Eosin		10	0.9a	0.8b	0.8b	0.7c	0.7c
			2	0.8a	0.7b	0.7b	0.6c	0.5d
	(0 ³ ul ⁻¹)		20	38d	38d	44c	45b	46a
	Neutrophils (10 ³ ul ⁻¹)	days	15	38d	39d	40c	44b	50ab
	Neutr	ġ	10	40bc	41c	49b	50ab	52a
	-		2	42c	44d	46c	48b	56a
	Lymphocytes (10 ³ ul ⁻¹)		20	65a	57b	52b	50c	48bc
	nocytes	days	15	63a	54b	50c	48d	46d
	Lympl	ġ	10	61a	53b	52b	50c	48d
			2	53a	49b	49b	48c	42d
	0³ µl¹1)		20	8.6e	9.2d	10.4c	11.6b	12.3a
	Leucocytes (x $10^3 \mu l^{-1}$)	days	15	9.8bc	10.7bc	11.9b	12.5ab	13.00a
	Leucoc	da	10	10.2de	11.1d	12.0c	13.2b	14.0a
able 3.			2	11.6c	12.0b	12.3b	14.8a	14.8a
chratoxin A oncentrations in	mum nts		OTA	20	20	20	20	20
rgans of rats fed DTA-contaminated hocolate	Aframomum Treatments	mqq		Cont.	1000	1500	2000	2500

0.0001; 0.0007; 0.0013). This correlation coefficient indicated that the target organs of OTA are the lungs, the spleen, the liver and the kidneys. These findings were in agreement with those of Muller *et al.* (1999) and Varga *et al.* (2000).

EFFECTS OF OCHRATOXIN A ON FREE RADICAL OXYGEN FORMA-TION IN RATS FED A. DANIELLI-TREATED CHOCOLATE AND UN-TREATED OCHRATOXIN A-CONTAMINATED CHOCOLATE

In rats, a suppression of radical oxygen formation as compared with the controls was observed with different levels of *A. danielli* treatments (Table 5). Using luminal-dependent chemiluminescence-expressing early oxidative processes (MDP- H_2O_2 halogenide system), oxidative stress increased from day 1 to day 30, the suppression of radical oxygen formation in rats fed *A. danielli*-treated chocolate. Thompson and Yoon (1984) suggested that polyphenols bind proteins, decrease the activity of digestive enzymes and finally reduce the digestibility and/or adsorption of glucose. Reduction of

	OTA	IW	FW	LIVER	LUNG	SPLEEN	KIDNEY
OTA		0708	0.9885	0.0343*	0.0483*	0.0148*	0.052*
IW			<.0001**	0.607	0.5252	0.3545	0.3299
FW				0.4431	0.6660	0.511	0.4240
LIVER					0.0007**	0.0013**	0.0026
LUNG						>0.0001**	<0.0001**
SPLEEN							<0.0001*
IW – Initial wei	ght; FW	/ –final	weight				
** Correlation is significant at p<0.05, * correlation is significant at p<0.01							

таыс ч.
Correlation of OTA
to the organs of

Table 4

chocolate

experimental rats

Treatment:						-
A. danielli	0	10	15	20	30	Table 5. Effect
1000ppm	1.20a	19.550±.21b	16.500±.42b	2.600±0.14b	27.80±0.28b	of Aframomum
1500ppm	0.40d	15.50±.14c	13.450±.21c	8.85±0.07c	21.44±0.00c	danielli on radical
2000ppm	0.10e	11.50±28d	10.50±0.14d	7.30±0.14d	20.1.±0.14d	oxygen formation
2500ppm	1.0b	3.950. ±07c	3.10±0.14e	4.15±+0.07e	8.150±0.07e	species induced by ochratoxin
Control	0.56c	21.350±.07a	23.70±0.14a	30.300±0.28a	33.60±.0.14a	A in animals fed
a. b. c. and d. m	eans alo	ng the same ver	tical column wi	th the same alph	abets are not	contaminated

a. b. c. and d. means along the same vertical column with the same alphabets are not significantly different at p>0.05

IJFNPH
OTA activity by A. danielli as shown in this study is not unusual, as several natural components of the diets including ∞-tocopherols and various polyphenols have been reported to exhibit potent antioxidant activities and thus might partly counteract OTA toxicity (Renzulli et al., 2000). Carvin et al. (1998), in a study on the effects of two diterpenes (kafestol and kahwen) in protecting green and roasted coffee beans against the covalent binding of aflatoxin B1 metabolites to the DNA of rats, identified diterpenes as potentially chemopreventive agents. Adegoke et al. (2000) also carried out a study on the inhibition of food spoilage yeasts and aflatoxigenic moulds by monoterpenes of the spice A. danielli. The superiority of A. danielli, a natural antioxidant, over the synthetic antioxidants BHA and BHT has been reported (Adegoke et al., 2000).

CONCLUSION

This study established that the target organs of OTA were the kidney, the spleen and the lungs and OTA negative effects such as radical oxygen formation, which can cause cell damage, were reduced by the chemopreventive activity of *A. danielli*. The use of *A. danielli* as evidenced in this study was not found to support body mass development and thereby did not support obesity. The use of *A. danielli* in the reduction of OTA in any contaminated chocolate is desirable in view of campaigns for the reduction of chemicals in food preservation.

ACKNOWLEDGEMENT

The authors wish to acknowledge Professor G.O. Iremiren, the Executive Director, Cocoa Research Institute of Nigeria, Ibadan, for permission to publish this paper.

REFERENCES

- Adegoke, G.O., Jagan Molan Rao, L. and Shakracharya, N.B. (1998), "A comparison of the essential oil Aframomum danielli (Hook) Schum and Ammomum subulatum, Roxb", Flavour Fragrance Journal, Vol. 13, pp. 349-352.
- Adegoke, G.O., Fasoyiro, S.B. and Skura, B. (2000), "Inhibition of food spoilage yeasts and aflatoxigenic moulds by monoterpenes of the spice Aframomum danielli", Flavour Fragrance Journal, Vol. 15, pp. 147-150.

- Carvin, C.D., Holzhauser, A., Constable A.C., Hugget, B. and Schilter (1998), "The coffee specific diterpenes, kafestol and kahweeol protect against afaltoxin B1-induced genotoxicity through a dual mechanism", Carcinogenesis, Vol. 19, pp. 1369-1367.
- Christoph, H., Christine, B., Kay, A.R., Stegfred W. and Gerald, R. (2005), "Effect of vitamin E and polyphenols on ochratoxin A induced cytotoxicity (HcpG) cells", *Journal of Plant Physiology*, Vol. 162, pp. 318- 322.
- Cowan, M.M. (1999), "Plant phenols as antimicrobial agents", Clinical Microbiology Reviews Vol. 12 No. 4, pp. 562-582.
- Fasoyiro, S.B., Adegoke, G.O., Obatolu, Y.A., Ashaye, O. and Aroyeun, S.O. (2000), "The antioxidant property of Aframomum danielli spice oils", The Journal of Food Technology in Africa, Vol. 6 No. 4, pp. 135-137.
- Hollwood, N. (1998), "The effect of fermentation time and washing of cocoa prior to drying on cocoa quality in Papua Guinea", *Cocoa Growers Bulletin*, Vol. 51, pp. 23-32.
- Li, S., Marquardt, R.R. and Frohlich, A.A. (1998), "Confirmation of ochratoxin in biological samples by conversion into methyl esters in acidified methanol", *Journal of Agricultural and Food Chemistry*", Vol. 46, No. 10, pp. 4307-4312.
- Lin, I., Zhang, I., Wang P., Wang Y. and Chen, J. (1998), "Thin Layer Chromatography of mycotoxins and comparison with other chromatographic methods", *Journal of Chromatography A*, Vol. pp. 815, 3-20.
- Maruyama, H., Wistanab, K. and Yamamoto, E. (1991), "Effect of dietary kelp on lipid peroxidation and gluthathione peroxidase activity in livers of rats given breast carcinogens", DMBA, *Nutrition and Cancer*, Vol. 15, pp. 221-228.
- Muller, G., Kielstein, P., Rosner, H., Berndt, A., Heller, M. and Kohler, H. (1999), "Studies of the influence of ochratoxin A on immune and defense reactions in weaners", Mycoses Vol. 42, pp. 495-505.
- Olojede, F. Engelhardt, G., Wallnoter, P.R. and Adegoke, G.O. (1993), "Decrease of growth and aflatoxin production in Aspergillus parasiticus caused by spices", World Journal of Microbiology and Biotechnology, Vol. 9, pp. 605-606.

IJFNPH	Reddy, B.S., Sharma, C. and Matthews, L. (1984), "Effects of Japanese
6,2	seaweeds Laminaria angiistata extracts on the mutagenicity of
,	7,1,2-dimethyl-benze-(a)anthracene, a breast carcinogen and
	3,2-dimethyl amino-biphenyl, a colon and breast carcinogen",
	Mutation Research, Vol. 127, pp. 131-134.

- Renzulli, C., Galvano, F., Pierdomenico, L., Speton, E. and Guera, M.C. (2004), "Effects of osmatinic acid against aflatoxin B1 and ochratoxin A-induced cell damage in a human hepatonic cell line (Hep 22)", Journal of Applied Toxicology, Vol. 24, pp. 289-296.
- Schaaf, G.J., Nijmeijer, S.M., Maas, R.F.M., Roestenberg, P., de Groene, E.M. and Fink- Sovanian, A. (1985), "Mechanisms and consequences of lipd peroxidation in biological Systems", Annual Review of Nutrition, Vol.5, pp. 363-390.
- Slater, T.F. (1984), "Free radical mechanisms in immune injury", Biochemistry Journal Vol. 222 No. 1, pp. 1-15.
- Thompson, L.U. and Yoon, J.H. (1984), "Starch digestibility as affected by polyphenols and hytic acid", *Journal of Food Science*, Vol. 4, pp. 1228-1229.
- Varga, J., Rigo, K., Teren, J. and Mestenherzy A. (2000), Recent advances in ochratoxin Research 1. Production, detection and occurrence of ochratoxins", *Cereal Research Communications*, Vol. 29, pp. 85-92.
- Whitehead, T.P., Thorpe, G.H.G. and Maxwell, S.R.J. (1992), "Enhanced chemiluminescence assay for antioxidant capacity in biological fluids", Annals of Chemistry, Vol. 266, pp. 265-268.

ABOUT THE AUTHORS

Dr Shamsideen Olusegun Aroyeun is Chief Research Officer at the Cocoa Research Institute of Nigeria in the Crop Processing and Utilization Unit. He has a PhD degree in Food Technology from the department of Food Technology at the University of Ibadan, Nigeria. He has many scholarly research publications in international journals and is currently the Head of Station of the Cocoa Research Institute of Nigeria, Mambilla, Taraba state, Nigeria. He is a member of the Mycotoxicology Society of Nigeria and also a member of the Nigeria Institute of Food Science and Technologists and the Institute of Food Technologists, Chicago, USA. **Professor Gabriel Olanrewaju Adegoke** is a professor of Food Microbiology/Safety at the University of Ibadan. He is a renowned microbiologist of international repute. He has held many leadership positions nationally and internationally. He worked extensively on reduction of the pathological effects of *Listeria monocytogens*, aflatoxins, ochratoxins and food and feed preservation with the spice essential oils of *Aframomum danielli* with the patent name Daniellin. He has publications in many international journals to his credit.

Reduction of the negative effect of ochratoxin A on the organs of rats fed ochratoxin A-contaminated chocolate 172

Dr Janos Varga is a lecturer at the University of Szeged, Hungary, Faculty of Science, Department of Microbiology. He is a highly respected scientist in the field of mycotoxin detection and control. He is currently an associate professor at the same University.