


Purpose

Background
Nanomedicine refers to the application of 
nanotechnology to improve the diagnosis, 
monitoring and treatment of diseases. Although 
the primary application was originally in oncology, 
nanomedicine has witnessed substantial scientific 
interest and growth beyond chemotherapeutic drug 
development.

Approach
Despite the widespread prevalence of 
cardiovascular diseases (CVDs), limitations remain 
in their clinical management regardless of the 
major technological advancement in diagnostic 
and therapeutic modalities available. In the present 
context, flourishing research in cardiovascular 
nanomedicine is expected to address the current 
challenges and bring about much sought for 
solutions to the identification and management of 
the progression of CVDs.

Practical Implications
As the research portfolio of nanomedicine 
expands, it can have a significant impact on the 
management of CVDs, particularly atherosclerosis. 
Nanotechnology presents an opportunity to 
address the components of atherosclerotic plaque 
and enhance the therapeutic approaches to 
atherogenesis. 
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Nanotechnology
Nanotechnology is the design, production, 
characterisation and application of materials, 
structures, devices and systems on the nanoscale 
(Abeer, 2012). The advent of nanotechnology is 
linked to Richard Feynman’s concept of synthesis 
by the direct arrangement and manipulation of 
atoms (Feynman, 1960). The applications of 
nanotechnology extend to diverse domains, such 
as electronics, computers, medicines, cosmetics, 
foods, purification processes, etc. (Abeer, 2012; 
Ventola, 2017). The global market size of the 
nanotechnology industry was worth US$300 billion 
in 2011; it is estimated that its value in 2041 will be 
US$35,000 billion (Antunes et al., 2013). 

The European Commission (2011) defines 
nanomaterials based on their size distribution. 
A material is classified as a nanomaterial if 
50% or more of the constituent particles in the 
number size distribution has one or more external 

dimensions in the size range 1-100 nanometres 
(nm). The nanomaterial could be natural, incidental 
or manufactured. It can exist in a free form, or as 
an aggregate or agglomerate (Rauscher et al., 
2017). A nanometre is approximately 1/80,000 
of the diameter of a human hair, or 10 times the 
diameter of a hydrogen atom (Shetty, 2006). The 
past decade has witnessed a growing interest 
in advanced nanomaterials among researchers, 
medical practitioners and industrialists for a wide 
spectrum of commercial, industrial and clinical 
practice applications. The main reason for this 
development has been the understanding that 
particles with a diameter less than 100 nanometres 
have more surface area to volume ratio; they also 
have enhanced properties, such as conductivity, 
strength, biochemical, electronic, magnetic 
and optical properties compared to bulk-sized 
materials (Thorley and Tetley, 2013; Ventola, 2017). 



Nanomedicine
The term ‘nanomedicine’ was put forward by 
Robert Freitas (1999). Nanomedicine involves 
the application of engineered nanosystems to 
gain a deeper insight into the complex core 
pathophysiology of diseases and enhance people’s 
quality of life (Sahoo, 2005; Rizzo et al., 2013). 
Nanomedicine focusses on the identification of 
targets (cells and receptors) related to specific 
clinical conditions, and suitable nanocarriers to 
achieve the desired response at the target site 
(Moghimi et al., 2005). Compared to conventional 
medicines dispersed in a free base, as in the case 
of tablets, capsules and injections, nanomedicines 
have numerous advantages (Ventola, 2017; Hua 
et al., 2018). The benefits include enhanced drug 
solubility, pharmacokinetics, and tissue selectivity, 
leading to improved efficacy and reduced toxicity 
(Ventola, 2017). The application of nanomedicine 
lies not only in manufacturing advanced and novel 
drugs but also in reformulating marketed drugs 
in order to enhance efficacy and delivery, and 
decrease adverse effects (Rizzo et al., 2013). 

The worldwide nanomedicine market was valued 
at US$248 billion in 2014 (Pandit and Zeugolis, 
2016). It is anticipated that the market size of 
nanomedicine will grow at an annual growth rate 
of 11% and reach US$351 billion by the year 2025 
(Grand View Research, 2019). 

At present, there are 77 products in clinical trials 
and 51 Food and Drug Administration (FDA) 
approved nanomedicines in the market (Bobo et 
al., 2016; Patra et al., 2018; The British Society 
of Nanomedicine, 2019). In 1995, liposomal 
formulation of an anti-cancer drug, doxorubicin, 
was one of the first nanomedicines to be approved 
for clinical use (Lobatto et al., 2011). The approval 
was based on lower cardiotoxicity compared 
with conventional doxorubicin (Ventola, 2017); it 
is still widely used as a gold standard injectable 
nanodrug (Tinkle et al., 2014). The majority of 
nanosystems approved so far are based on 
improved stability, half-life, bioavailability, and 
safety of current drugs (Cicha et al., 2018). 
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Nanomaterials
as Novel Drug Delivery Systems
Efforts to explore nanomaterials for drug delivery 
applications date back to the 1970s. One of 
the major focus areas of current nanomedicine 
research is on developing novel drug delivery 
systems with new or improved features. The 
upper size limits of nanomaterials employed as 
drug delivery systems are often variable (Boverhof 
et al., 2015). These include micelle (10-100nm), 
liposome (40-1000nm), polymer nanoparticle (20-
1000nm), solid lipid nanoparticle (50-1000nm), 
dendrimer (3-20nm), carbon nanotube 
(0.5-3.0nm × 20-1000nm) and 
metallic nanoparticle (60-
150nm) (Mishra et al., 
2012; Katsuki et al., 
2017). Other delivery 
vehicles are carbon or 
organometallic based, 
virus-like, or inorganic 
particles (gold, silver) 
and metal oxides. 

Lipid-based 
nanoparticles (solid 
lipid nanoparticles, 
micelles, nanosuspensions, 
nanoemulsions) represent 
one of the most widely employed 
nanocarriers for delivering drugs 
(Schiener et al., 2014). Nanoparticles can 
display strong interactions with biomolecules, 
such as enzymes, receptors and antibodies, 
both on the surface and inside the cell. The 
surface of the nanoparticles can be modified by 
engineered coatings and integration of a variety of 
bioconjugated molecules for selective detection 
and treatment of several diseases (Fan et al., 
2014). On reaching the desired site of action, 
nanocarriers should be able to release the drug 
in therapeutically effective concentrations without 
affecting healthy tissues. Many cases require the 
drug to reach its intracellular target, for example, 
the cell nuclei, cytoplasm or other cell organelles 

(Schiener et al., 2014). 

Drug loaded nanoparticles deliver drugs via 
various transport mechanisms: active targeting, 
passive targeting and triggered release (Hua 
et al., 2018). Active targeting is also known as 
ligand-targeting or receptor-mediated targeting. 
Nanocarriers can be functionalised with active 
recognition moieties, such as antibodies, peptides, 
or sugar to drive them to the target site and 

improve uptake and efficacy (Minelli 
et al., 2010). The Enhanced 

Permeability and Retention 
(EPR) effect refers to the 

preferential localisation 
of the nanocarriers in 
diseased tissues (e.g., 
tumours, inflammatory 
conditions) compared 
to normal tissues; this 
is due to the enhanced 
permeability of the 

abnormal vasculature 
(Hua et al., 2018). 

This leads to passive 
accumulation, for which the 

drug-loaded nanocarrier needs 
to have prolonged circulation in 

the bloodstream. This can be facilitated 
by conjugating polyethylene glycol (PEG) to the 
surface of the nanocarrier. Properties like pH, 
temperature, and shape influence the passive 
uptake of drugs (Minelli et al., 2010; Patra et al., 
2018). In triggered release, also referred to as 
stimuli-responsive release, the nanocarrier releases 
the drug in response to endogenous stimuli (local 
environment at the disease site, pH, enzymes) or 
exogenous stimuli (temperature, light, magnetic 
field, ultrasound) (Hua et al., 2018; Patra et al., 
2018).

Nanotechnology-enabled delivery of drugs is 
a dominant research field in nanomedicine, 



contributing to more than 75% of total sales (Mir 
et al., 2017). Green nanodrug delivery systems 
based on environmental friendly synthesis routes 
or natural biomaterials (such as plant extracts and 
microorganisms) are now producing innovative 
safer materials with higher potentials for scale-up 
and commercialisation (Jahangirian et al., 2017). 
Other areas of application are in vivo imaging 
agents, in vitro diagnostic sensors, nanoscale 
therapies, biomaterials, and active implants 
(Nature Publishing Group, 2007). Manufacturing 
of an old drug into a new nanotechnology-
enabled product leads to a compound with 

modified pharmacokinetic properties. In fact, 
a majority of patents and currently available 
nanomedicines are based on novel drug delivery 
to enhance bioavailability and targeting of existing 
medicines (Toit et al., 2007; Berger, 2013). 
Technological developments in research areas 
(including molecular and cellular biology, genetics, 
proteomics, lipidomics, material science and 
bioengineering), make nanotechnology one of the 
primary prospective players in the detection and 
management of cardiovascular diseases.

Cardiovascular Diseases
Cardiovascular diseases (CVDs) is the collective 
term for a number of linked pathologies of the 
heart and blood vessels. It includes diseases 
of the arteries supplying the heart (coronary 
heart disease), the brain (cerebrovascular 
disease), the periphery, especially leg muscles 
(peripheral arterial disease), rheumatic heart 
diseases, congenital heart diseases, and venous 
thromboembolism (Stewart et al., 2017). CVDs 
account for approximately 31% of global 
deaths annually (17.9 million people) (Benjamin 
et al., 2017; 2018), and are the leading cause 
of mortality and loss of disability-adjusted life 
years (DALY) worldwide (Vilahur et al., 2014). 
Mathers and Loncar (2006) projected that global 
cardiovascular deaths will reach 23.3 million in 
2030. The underlying and dominant pathology of 
most CVDs is the deposition of fatty plaques within 
the arterial walls making the artery harder and 
narrower, a condition known as atherosclerosis, 
leading to subsequent thrombosis (Viles-Gonzalez 
et al., 2004). Atherosclerosis originates with the 
dysfunction of the endothelium and a cascade 
of events involving various cells and molecules 
(Nakhlband et al., 2018). Atherosclerotic plaque 
formation results from complex cellular interactions 
in the intima of arteries between the cells of the 
vessel wall (smooth muscle cells and endothelial 
cells) and inflammatory cells (macrophages 
and T lymphocytes) (van der Wal and Becker, 
1999). Atherosclerotic plaques consist of fatty 
substances, intracellular and extracellular lipid, 

cellular waste products, calcium, collagen and 
fibrin (a clotting material in the blood) (van der 
Wal and Becker, 1999; Insull, 2009). High total 
cholesterol (TC) and low-density lipoprotein 
cholesterol (LDL-C) are modifiable risk factors 
of CVDs (Peterson and Greenland, 2019). The 
worldwide prevalence of high cholesterol in adults 
over 25 years is about 39% (Alwan et al., 2011; 
Farzadfar et al., 2011). LDL-C plays a major role 
in the progression of atherosclerosis (Soran et 
al., 2017), and an elevated level of cholesterol is 
estimated to account for 4.5% of total deaths (2.6 
million lives) (World Health Organization, 2009; 
Alwan et al., 2011).

The focus of current treatments for CVDs is on 
restoring normal blood flow through or around 
the damaged vasculature and the prevention of 
cardiovascular events (Chandarana et al., 2018). 
A plethora of therapeutics such as statins, beta-
adrenergic receptor blockers, antiplatelet agents, 
coronary stents and surgical interventions have 
been prominent contributions in dealing with 
CVDs (Ismail et al., 2015). However, there are 
limitations in the management of CVDs, regardless 
of the major technological advancement in the 
diagnostic and therapeutic modalities (Godin et 
al., 2010). The available therapeutic options are 
not sufficient to stop or significantly reduce the 
progression of CVD and may cause harmful side 
effects (Giménez et al., 2017). Early detection of 
diseases and cell-specific delivery of therapeutics 
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bears the potential to improve the prevention of 
cardiovascular morbidity and mortality (Cicha 
et al., 2013). Nanomedicine aims to address 
the existing therapeutic challenges of CVDs by 
providing more effective and safer therapeutic 
alternatives. Endothelial cells represent the first 
point of contact for nanoparticles administered via 
the intravascular route (Cicha, 2016). Therefore, 

medicines targeting impaired endothelium remain 
a significant need (Tang et al., 2012). Nanoparticles 
can be engineered to reach and target endothelial 
cells directly from the circulation; this is due to 
the high expression levels of specific adhesion 
molecules and increased cellular gaps in early 
stages of atherosclerosis (Tang et al., 2012).



Cardiovascular Nanomedicine
Cardiovascular nanomedicine focusses on 
enhancing the diagnosis and therapy of CVDs by 
advancing biomarker detection and imaging, as 
well as by targeted enhanced delivery of drugs and 
tissue regeneration devices (Godin et al., 2010). 
Currently, two nanomedicines have been approved 
for the management of CVDs. Nanocrystals of 
fenofibrate and Colesevelam HCl in polymeric 
forms were approved for hyperlipidaemia in the 
United States in 2000 and 2004, respectively 
(Schütz et al., 2013; Su et al., 2017; The British 
Society of Nanomedicine, 2019). The solubility 
and bioavailability of fenofibrate were increased 
by micronisation and nanoformulation, rendering 
it bioequivalent in fed and fasting conditions 
(Ling et al., 2013). Nanocrystalline fenofibrate 
enhanced therapeutic efficacy as well as 
reducing the adverse effects (Khairnar et al., 
2017). Colesevelam, a polymeric sequestrant of 
bile acids, was based on hydrophobically and 
cationically modified crosslinked poly(allylamine). 
The secondary binding forces provided by the 
hydrophobic decyl groups significantly increased 
the potency of colesevelam (Li et al., 2015).

Despite the abundance of promising lab-scale 
results in cardiovascular nanomedicine, some 
of which will be discussed below, the number 
of clinical trials remains low (Cicha et al., 2018). 
There were 13 clinical trials for nanoparticles 
for CVDs compared to 176 completed or 
ongoing studies for cancer registered on the 
homepage of clinicaltrials.gov up to 2018 (Cicha 
et al., 2018). Most of the trials for cardiovascular 
applications were related to the clinical use of 
iron oxide nanoparticles for enhanced detection 
and characterisation of atherosclerotic plaques 
(ferumoxtran, SineremVR) (Trivedi et al., 2006; 
Howarth et al., 2009; Sadat et al., 2013), aortic 
aneurysms (ferumoxtran, SineremVR) (Richards 
et al., 2011), and the detection of inflammation in 
myocardial infarction (ferumoxytol, FerahemeVR) 
(Alam et al., 2012; Yilmaz et al., 2013; Florian et 
al., 2014). NanoAthero was a large-scale 5-year 
multinational project to demonstrate the benefits 
of the use of nanoparticle technologies. It included 
several studies for the diagnosis and treatment 
of atherosclerosis and stroke (Chauvierre and 
Letourneur, 2015). As a part of the NanoAthero 
project, a clinical study was conducted by van 

der Valk et al. (2015) with a Good Manufacturing 
Practice (GMP) steroid (prednisolone) 
encapsulated in PEGylated liposomal formulation 
on the basis of previous preclinical studies. 
Although the formulation had no anti-inflammatory 
effect in atherosclerotic lesions, it improved the 
pharmacokinetic profile and provided guidance for 
the future development of nanomedicine for CVDs.
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Diagnostic Nanomedicine
Nanotechnology-based diagnostic techniques 
can offer higher sensitivity and improved image 
resolution with respect to current methods. 
This can enable early detection of disease, 
better understanding and improved therapeutic 
outcome (Boulaiz et al., 2011). The characteristics 
of nanomaterials that make them valuable for 
medical imaging are size distribution (enabling 
incorporation with various bio-components), high 
penetration ability, targeted delivery at a specific 
site, image contrasting power, tuneability at 
nanosurface, increased stability and lifetime (Deb 
et al., 2015). To date, some of the materials utilised 
to manufacture nanomedicines for applications 
in imaging include lipids, polymers, organic 
precursors (dendrimers), inorganic 
molecules (gold, iron oxide, quantum 
dots), carbon (carbon nanotubes 
and pipes), metal oxides, 
and biological constituents, 
such as proteins (Chung et 
al., 2015). Nanosystems 
functionalised with contrast 
agents and ligands directed 
towards specific biomarkers 
can be used for molecular 
imaging of cardiovascular 
pathologies (Chauvierre and 
Letourneur, 2015; Juenet et al., 
2015). Design and construction 
of nanomaterials with enhanced 
characteristics yield several precursor 
materials enabling the design of contrast 
agents for imaging applications, optical switches 
for initiating drug release or for therapeutic 
purposes (Sahoo, 2005). 

The components of atherosclerotic plaques can 
be explored for the application of nanotechnology 
to improve the diagnostic and therapeutic 
approaches to atherosclerosis (Jayagopal et 
al., 2010). The endothelia, fibrin, collagen III, 
macrophages and biomarkers of angiogenesis 
are some of the potential targets for imaging 
atherosclerotic plaques. The promising targets 
examined for the nanotechnology-based imaging 
and therapy of atherosclerosis and targeting 
mechanism are presented in Table 1. Fibrin 
deposition marks one of the initial hallmarks 
of atherosclerotic plaque rupture. Rupture of 

susceptible and exacerbated atherosclerotic 
plaques can have several damaging 
consequences. Fibrin and tissue factors remain 
potential targets for imaging arterial thrombi by 
ultrasound and Magnetic Resonance Imaging 
(MRI). The ligand nanoparticle conjugation 
specifically interacting with αvβ3-integrin is an 
example of angiogenesis targeting (Kraft et al., 
2014). The number of prospective targets within 
the lesions containing a plethora of specific 
cell types, such as macrophages, and the up-
regulation of cell surface receptors, such as 
vascular cell adhesion molecule-1 (VCAM-1) has 
stimulated research in this area (McCarthy, 2010). 

Clinically, vulnerable lesions need 
to be detected and identified 

before the symptoms 
appear (McCarthy, 2010). 

One of the first 
nanosystems to 
reach the market 
is Ultrasmall 

Superparamagnetic 
Iron Oxides 

(USPIOs) for MRI 
(Juenet et al., 2015). 

Superparamagnetic 
Iron Oxide (SPIO) or USPIO 

labelled cells in combination with 
MRI have been used for the diagnosis of 

CVDs, multiple sclerosis, and neurodegenerative 
brain disease (Riehemann et al., 2009). Contrast 
generating nanomaterials have been employed 
as multidimensional approaches to detect and 
characterise initial phases of disease before the 
manifestation of gross pathological symptoms. 
Fluorescent, radioactive, superparamagnetic, 
paramagnetic, electron-dense and light scattering 
particles represent a few of the contrast agents 
engineered on a nanoscale for imaging of CVDs 
(Kraft et al., 2014). Gold nanoparticles (GNPs) 
have shown promise in preclinical studies 
for imaging of CVDs. Due to their strong light 
scattering properties, they have been utilised 
as contrast agents for optical or X‐ray imaging 
modalities to detect atherosclerotic plaques, 
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intravascular thrombus, or fibrotic tissue (Ambesh 
et al., 2017; Varna et al., 2017). Nahrendorf et al. 
(2006) functionalised multivalent monocrystalline 
magnetic nanoparticles (MNPs) with peptides 
that direct MNPs to cells expressing VCAM-1, a 
biomarker of inflammation in atherosclerosis (Jiang 
et al., 2017). Intra-arterial thrombosis remains a 
common underlying pathological cause of various 
CV syndromes, including myocardial infarction (MI), 
cerebrovascular accident (CVA), and pulmonary 
embolism. Some of the diagnostic techniques 
employed for the detection of thrombosis are 

doppler ultrasound, X-ray computer tomography 
(CT) imaging or MRI. However, the characterisation 
of clots, including the constituent components or 
biological age, remains a challenge. This could 
support the efficacy of the treatment modalities. 
Therefore, several molecular imaging approaches 
have been engineered to aid visualisation of the 
formation of thrombus, such as fluorescently 
labelled platelets, and fluorescently or radiolabelled 
ligands targeted to other components, such as 
fibrin and coagulation factors (McCarthy, 2010).

Table 1: Targets examined for nanotechnology-based
              imaging and therapy of atherosclerosis 

Target ReferencesDescription of the targeting mechanism

Endothelial cell
(ICAM-1, VCAM-1)

Macrophage
scavenger receptor

Apoptosis

Neovascularisation

Matrix 
metalloproteinases 
(MMPs)

Extracellular matrix

Thrombus

Internalises imaging agents or therapies bound to cell 
adhesion molecule-specific peptides or antibodies

Internalises dextran-coated iron oxide nanoparticles for 
MR contrast, or antibody-linked imaging agents, and/or 
therapies via scavenger receptor endocytosis

Phosphatidylserine residues on apoptotic cells, or the 
caspase family of enzymes, can be targeted by molecular 
imaging agents

Neovessel-specific integrins, extracellular matrix 
molecules, and cell adhesion molecules enable targeted 
molecular imaging and therapy

Nanoparticles featuring MMP-cleavable can be used to 
develop a variety of site-specifically activated imaging and 
drug delivery reagents. Several emerging nanotechnologies 
are based on functional actuation by MMPs

Collagen subtypes present in the plaque such as I, III, and 
IV can be imaged in the plaque using a collagen-binding 
protein linked to contrast agents

Activated platelet integrins and exposed fibrin can be 
targeted by antibodies, peptides, and small molecules 
linked to contrast agents to image vulnerable plaques, or 
drug delivery vehicles for delivery of antithrombotic agents

Muro and 
Muzykantov (2005);
Nahrendorf et al. (2006);
Zhang et al. (2008)

Raynal et al. (2004);
Amirbekian et al. 
(2007)

Johnson et al. (2005);
Faust et al. (2007);
Smith et al. (2007)

Matter et al. (2004);
Lanza et al. (2006);
Winter et al. (2006)

Wagner et al. (2006);
Lancelot et al. (2008)

Megens et al. (2007)

Winter et al. (2003);
Sirol et al. (2005);
Lanza et al. (2006);
Srinivasan et al. (2010)

Source: Jayagopal et al., 2010

ICAM: intercellular adhesion molecule, MMP: matrix metalloproteinase, MR: magnetic resonance, VCAM: vascular cell adhesion molecule
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Therapeutic Nanomedicine
The added values of nanomedicines in 
therapeutics include improved pharmacodynamics, 
pharmacokinetics, efficacy and safety (Ventola, 
2017). Nanomedicines can be designed to enable 
entry to previously impermeable locations, longer 
circulation, enhanced accumulation, controlled 
site-specific drug delivery and reduced adverse 
effects (Ventola, 2017). 

In the field of cardiovascular research, some of the 
major focus areas of application have been the 
therapy of atherosclerosis, recurrence of stenosis, 
and targeted clinical imaging (Kraft et al., 2014). 
Atherosclerotic plaques and new or thickened 
layers of arterial intima present a range of stage-
specific molecules during progression stages that 
can be employed as targets in CVDs, for example, 
intercellular adhesion molecule (ICAM), vascular 
cell adhesion molecule-1 (VCAM-1) and others 
(Godin et al., 2010). An interventional approach to 
atherosclerosis has some issues, such as long-
term antiplatelet therapy and restenosis associated 
with stents (Cicha et al., 2013). Cyrus et al. (2008) 
showed that αvβ3-integrin-targeted rapamycin 
loaded paramagnetic nanoparticles significantly 
reduced stenosis without affecting endothelial 
healing. Nanocoatings on drug-eluting stents (DES) 
deliver the drug at the targeted site of plaque 
accumulation (Karimi et al., 2016). 

Dextran-coated magnetofluorescent nanoparticles 
were functionalised with a photosensitiser, 

which released oxygen upon exposure to light 
of a certain wavelength. Detection and lysis of 
macrophages by the oxygen released proved to 
be vital for the future diagnosis and management 
of atherosclerosis (Jiang et al., 2017). Iron oxide 
nanoparticles have been examined for the 
magnetically targeted delivery of thrombolytic 
agents (McCarthy et al., 2010). Magnetic targeting 
encompasses the utilisation of a magnetic field 
to the targeted site, followed by injection of 
the bioactive molecule-magnetic nanoparticle 
injectable complex (Giménez et al., 2017). The 
agent accumulates within the magnetic field at the 
desired site as it passes through the circulation 
(McCarthy et al., 2010). 

D-Phenylalanyl-prolyl-arginyl Chloromethyl 
Ketone (PPACK) functionalised perfluorocarbon-
core nanoparticles were developed; this led to 
enhanced anti-thrombotic activity in a mouse 
model of arterial thrombosis. However, there 
have been limitations in clinical use due to rapid 
clearance (Rhee and Wu, 2013; Giménez et al., 
2017). Although Peters and group demonstrated 
the in vivo ability of hirudin entrapped micelles 
functionalised with fibrin binding peptides to target 
fibrin rich clots, thrombolytic efficacy is yet to be 
established (Rhee and Wu, 2013). 

Table 2 highlights various nanotechnology-enabled 
approaches that have been researched for CVDs, 
such as hypertension, hyperlipidaemia, myocardial 



infarction and thrombosis (McCarthy, 2010). Low 
nitric oxide (NO) bioavailability is a key factor in the 
manifestation and progression for CVDs such as 
hypertension (Giménez et al., 2017). Gold and silica 
nanoparticles have been engineered to enhance 
the supply of NO to manage hypertension. 
High levels of reactive oxygen species (ROS) 
are often linked to CVD progression. Cerium 
nanoparticles (CeO2 NP) possessing antioxidant 
potential were found to reduce microvascular 
dysfunction and oxidative stress associated with 
hypertension (Giménez et al., 2017). Raju et al. 
(2014) formulated solid lipid nanoparticles loaded 
with simvastatin that showed controlled release 
and improved bioavailability. A novel approach of 

anti-apolipoprotein B100-polylactide nanoparticle 
conjugates showed up to a six-fold decrease of 
LDL-C levels in a mouse macrophage cell line 
without toxicity (Maximov et al., 2010). Some 
nanoparticles possess therapeutic benefit on their 
own; for example, silver nanoparticles with size-
dependent antiplatelet activity and magnesium 
oxide nanoparticles with antibacterial efficacy 
reducing infections linked to medical implants and 
devices (Jiang et al., 2017). Polizzi et al. (2007) 
decorated gold nanoparticles with amine ligands 
for sustained release of nitric monoxide (NO); these 
are capable of mediating endothelial and vascular 
smooth muscle cell functions. 

Table 2: Synopsis of nanotechnological approaches for CVDs

DiseasesS. 
No. DrugNanotechnological approach

Hypertension

Hyperlipidaemia

Pulmonary 
Hypertension

Myocardial 
Infarction

Thrombosis

1

2

3

4

5

Nanoemulsion system
Solid-lipid nanoparticles
Dendrimers
Nanosuspension
Nanoparticles

Polymeric drug
Nanocrystal
Solid lipid nanoparticles
Nanoemulsion system
Nanosuspension
Nanosponge
Nanostructured lipid carrier
Polymer nanovesicles
Nanoparticles

Nanoparticles

Nanoparticles
Liposomes
Silica nanoparticles
Nanofibers

Nanoparticles

Curcumin
Carvedilol
Candesartan dilexetil, Nifedipine
Nevibilol
Telmisartan
Colesevelam HCl
Fenofibrate, Atorvastatin
Simvastatin
Curcumin, 17-β E, Paclitaxel, 
Simvastatin
Fenofibrate, Simvastatin, Ezetimibe
Atorvastatin, Fenofibrate, Lovastatin
Lovastatin
Pravastatin
Pitavastatin

Bosentan; NF-Kappa β
antagonists
Contrast agents for stem cell therapy; 
irbesartan poly-(lactic-co-glycolic) 
acid (PLGA)
Phosphatidylserine
Adenosine
Vascular endothelial growth factor (VEGF)

Tissue plasminogen activator (tPA), 
D-Phenylalanyl- prolyl-arginyl 
Chloromethyl Ketone (PPACK)

Source: Giménez et al., 2017; Khairnar et al., 2017; The British Society of Nanomedicine, 2019
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Regenerative Nanomedicine
The technological applications based on 
nanotechnology have also been applied to the 
field of regenerative medicine for cartilage repair, 
bone reconstruction, and the regeneration of skin, 
nerve and cardiac tissue (Perán et al., 2013). The 
promotion of new blood vessels from existing ones 
is essential for the regeneration of cardiac tissue 
after myocardial ischemia (Bejarano et al., 2018). A 
synthetic biomaterial, nanofibrous scaffolds made 
of L-lactic acid with trimethylene carbonate (LLA-
co-TMC), has demonstrated its ability to enhance 
cardiac muscle cell proliferation for myocardial 
regeneration. Tissues have been engineered to 
produce fully functional artificial heart valves, and 
nanoparticles have been employed to modify 

the structure and function of diseased valves. 
Functionalised nanoparticles that serve as drug 
carriers can target atherosclerotic progression 
involving degeneration of heart valves (Perán et 
al., 2013). The application of nanotechnology into 
stent design and technology has also presented 
innovative approaches for delivering drugs 
from mesoporous substrates and enhanced 
biocompatibility from nano-textured surfaces 
(Godin et al., 2010). The m can be prevented 
without hindering the healing of endothelium and 
causing endothelial dysfunction by local drug 
delivery based on nanotechnology (Cyrus et al., 
2012).

Theranostic Nanomedicine
Theranostic nanomedicine is based on the 
exciting concept of combining three functions, 
namely targeting, diagnosis, and therapeutics, 
within a single formulation (Lammers et al., 2010; 
Ventola, 2012). Theranostic nanomedicine contains 
both a therapeutic drug and a diagnosing label 
(Lammers et al., 2010), enabling the tailoring of 
the properties of the engineered nanomaterials 
(McCarthy, 2010). The findings of preclinical 
studies gradually applying theranostics to CVDs 
have been encouraging (Tang et al., 2012) and 
a step closer to personalised medicine (Jiang 
et al., 2017). De Olivera Gonçalves et al. (2015) 
functionalised 5-aminolevulinic acid (ALA) gold 
nanoparticles with polyethylene glycol (PEG) 
and administered them to rabbits. ALA was 
converted into endogenous protoporphyrin (PPIX) 

in atherosclerotic plaques. An increase in blood 
and faeces porphyrin emission indicated that it 
could be utilised for early diagnosis and therapy of 
atherosclerosis. Macrophages play a vital role in 
the progression of atherosclerotic plaques (Shetty 
et al., 2019). McCarthy (2010) designed light-
activated cross-linked dextran-coated iron oxide 
nanoparticles for targeted macrophage ablation 
in mice. The developed theranostic nanoagent 
had therapeutic and imaging functionalities in 
inflammatory atherosclerosis. Research is also 
being focussed on utilising the extensively studied 
and established nanoparticulate agents for the 
imaging of atherosclerosis strategies to deliver 
two or more therapeutic agents simultaneously 
(McCarthy, 2010). 
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Challenges
There are several scientific, analytical, 
environmental, regulatory and cost-benefit issues 
posing a variety of challenges to the clinical 
translation of nanomedicines (Chavda, 2016; 
Ventola, 2017). Therefore, very few nanomedicines 
have reached the clinical studies and market from 
the research bench (Godin et al., 2010; Cicha 
et al., 2018). Some of the issues are a lack of 
repeatability in the synthesis, the limited number 
of methods and standards available for their 
characterisation, regulatory approval, and a degree 
of resistance to switch from traditional to more 
innovative medicines. Any subtle variations or 
contaminant in the production process and testing 
could lead to altered physicochemical properties; 
this would affect therapeutic efficacy and safety 
(Ambesh et al., 2017; Ioannidis et al., 2018). In 
addition, the development of nanomedicines has 
evolved faster than the regulations (Fornaguera 
and García-Celma, 2017). There are no specific 
regulatory guidelines to ensure standardised GMP 
production and quality control of nanomedicines 
(Ventola, 2017; Hua et al., 2018). The complexity 
of nanomedicine patents and intellectual property 
rights also poses challenges (Hua et al., 2018). 
Handling and control of materials, structures and 
devices on a nanoscale presents greater scientific 
and technical challenges than conventional 
medicine (Hua et al., 2018). The increasing use of 
engineered nanoparticles can increase their levels 
in the groundwater and soil, raising environmental 
concerns (Jeevanandam et al., 2018). In addition, 
conventional medicine manufacturing facilities lack 
the capability of manufacturing nanomedicines 
(Agrahari and Hiremath, 2017). The major unknown 
risks associated with nanosystems include 
translocation to undesired cells, potential toxicity, 
and uncertainty of the clearing process (Chavda, 
2016; Ambesh et al., 2017). 

Furthermore, there are other challenges 
associated with the development of cardiovascular 
nanomedicine. The optical and fluorescence 
techniques generally used to image molecular 
changes in in vitro studies require further 
advancement in instrumentation, assessment 
of contrast agents, and data analysis for direct 

clinical translation (Pysz et al., 2010). Many of the 
stimulating preclinical results have not progressed 
beyond the developmental phase (Soares et 
al., 2018), and it remains to be studied if the 
results from one species can be extrapolated to 
another (Chan et al., 2018). This could be due 
to pathological differences (Tang et al., 2012), 
for example, murine atherosclerosis is vastly 
accelerated compared to humans (Schiener et al., 
2014; Nakhlband et al., 2018). A perfect animal 
model that completely replicates all stages of 
human cardiac disease does not exist to enable a 
thorough investigation of nanoparticle interaction. 
Identification and standardisation of appropriate 
in vitro and animal models to mimic CVDs remain 
a challenge considering the discrepancies in 
scientific research (Fitzgerald et al., 2011). The 
immune system contains multiple pathways to 
maintain homeostasis. In addition, delivering the 
benefits of anti-inflammatory bionanomaterials 
to the management of chronic inflammatory 
conditions in CVDs, should not compromise the 
host defence mechanism provided by the immune 
system. Although atherosclerotic plaques may be 
less structurally complex or heterogeneous than 
tumours, plaque volumes are significantly smaller 
than tumours (Chan et al., 2018). 

Several issues need further investigation, such as 
interaction with plasma proteins, endothelium, the 
effect of targeting ligand with different cell types 
and extracellular components, internalisation 
kinetics, the pathway of uptake and fate of 
nanoparticles after entering the atherosclerotic 
plaque (Chan et al., 2018; Kim et al., 2019). 
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Conclusions and Future 
Perspectives

Acknowledgements

In the years to come, nanotechnology will serve a 
vital role in providing creative opportunities for the 
early diagnosis of diseases and therapeutic options 
for targeted drug delivery and patient-tailored 
therapy, thereby improving people’s quality of life. 
With the better characterisation of nanomaterials 
and guidelines established to bridge the gap 
between conventional medicine and nanomedicine, 
nanomedicine bears the enormous potential to 
diagnose and manage several diseases. However, 
with expanding interest and continuing research, 
each formulation is bound to face unique biological 
and technological challenges in its clinical 
translation. Interdisciplinary collaboration with an 
exchange of knowledge and skills of academia, 
drug manufacturers, supported by regulatory 
agencies, will be vital in translating from the bench 
to clinical application. 

There is tremendous scope for nanomedicine in 
cardiovascular diseases, and further research is 
warranted to improve tissue-specific targeting and 
to reduce toxicity. There is a need for extensive 

studies on nanoparticle interactions with vascular 
endothelium to establish the relationship between 
physicochemical properties of nanoparticles and 
their delivery efficiency. The expanding list of 
preclinical applications of nanomaterials highlights 
the growing interest in the field of atherosclerotic 
nanomedicine. There are prospects for a number 
of nanotechnology-enabled formulations 
since several polymeric and lipid-based nano-
formulations are being tested in preclinical and 
clinical trials. Plaque-targeted drug delivery, site-
specific targeting, fabrication of multifunctional 
nanomaterials, and design of nanoscale devices 
presents promising avenues for enhancing the 
clinical management of atherosclerosis. The future 
of cardiovascular nanomedicine indeed seems very 
exciting with newer molecular targets, deepening 
knowledge, better understanding and concerted 
research efforts. Certainly, there is plenty of room 
for further advancement of nanomedicine. 
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